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What the Author Would Like to Say

This introduction serves as reviewing materials of the course Information Theory by
lecturer Wang Liwei. However, I do not want to simply list several conclusions or theorems
without careful explanations. Hence, I will try to explain the logic behind the theorem so
that they would be friendly to readers. In short, I write this introduction in admiration of
the lecturer and millions of relevant scholars in the field of computer science. I would like
to extend my greatest appreciation to them.

Due to time limitation, I leave out the part of the introduction of probability because I do
not think anyone who is now reading this introduction shall lack relevant knowledge. So we will
start from the concept of entropy.

1 Entropy

If we denote pi as the possibility of the occurrence of the ith character and li as the length
of its code, then the average code length is defined as the expectation of the length of the code:

E(l) =
∑
i

pili.

And we wish to minimize the average code length when it is uniquely decodable.
On this occasion, we hope that the code is prefix-free. However, this is a full but unnecessary

requirement. But we can prove that for every non-prefix-free codes, there always exists a type
of prefix-free codes which is not worse than it. As a result, we will only take prefix-free codes
into consideration in the following parts.

Theorem 1.1 (Kraft Inequality). Assume that c1, · · · , cn are prefix-free codes and l1, · · · , ln are
their lengths. Then

n∑
i=1

2−li ≤ 1

with equality if and only if li(1 ≤ i ≤ n) consist of a full binary tree.

Proof. By induction of the depth of the binary tree.

It is trivial that we could get a binary tree if li satisfies 1.1. Hence, let us take a look at the
following question: Assume p1, · · · , pn ≥ 0. Find out

min
(l1,··· ,ln)

n∑
i=1

pili

where
n∑
i=1

2−li ≤ 1.

If we replace qi with 2−l1 , then we want to find out

max

n∑
i=1

pi log qi,
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where

1 =

n∑
i=1

pi ≥
n∑
i=1

qi.

We already know that
n∑
i=1

pi log qi ≤
n∑
i=1

pi log pi.

Hence, if we assume that li could be any positive number, then li = − log pi and a lower bound
for the source coding is

n∑
i=1

pi log
1

pi

(bits).

Definition 1.2 (Entropy). For random variable X and its probability distribution function
p = (p1, · · · , pn), define its entropy as

H(X) =

n∑
i=1

pi log
1

pi
.

Let us take a look at the definition of entropy: As to random variable X and its probability
distribution function

X = (p1, p2, · · · , pn = q1 + q2).

If we define two new random variable

Y =

(
q1

q1 + q2
,

q2

q1 + q2

)
and

Z = (p1, p2, · · · , pn−1, q1, q2),

we can prove that (the addition of entropy):

H(X) + pnH(y) = H(Z).

Since we have already get a infimum of the average code length, how to design such “optimal
codes”?

According to the theorem above, we already know several properties of optimal codes:

• p1 ≥ · · · ≥ pn ⇒ l1 ≤ · · · ≤ ln.

• By Kraft Inequality, we know that all nodes form a complete binary tree.

• ln = ln−1. Without loss of generality, we can assume that the two nodes are siblings.

• If we merge pn−1 and pn, then the new code Y = (p1, · · · , pn−2, pn−1 + pn) shall also be
optimal codes.

By the properties above, we conclude that the optimal code shall be Huffman Code.

2 Joint Entropy, Conditional Entropy, Relative Entropy,
Mutual Information

2.1 Joint Entropy

Definition 2.1 (Joint Entropy). Let X,Y be random variable with their joint probability distri-
bution p(x, y), then the joint entropy is defined as

H(X,Y ) = −
∑
i,j

P (X = i, Y = j) logP (X = i, Y = j)

(bits).
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2.2 Conditional Entropy

Given Y = j, the entropy of X is defined as

H(X|Y = j) = −
∑
i

P (X = i|Y = j) logP (X = i|Y = j).

Inspired by this fact, we will define conditional entropy.

Definition 2.2 (Conditional Entropy). Let X,Y be random variable with conditional probability
distribution p(x|y), then the conditional entropy is defined as

H(X|Y ) =
∑
j

P (Y = j)H(X|Y = j) = −
∑
i,j

P (X = i, Y = j) logP (X = i|Y = j)

It is easy to prove that H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(Y |X). Hence, by Jensen
Inequality,

H(X,Y ) = H(X) +H(Y |X) ≤ H(X) +H(Y ),

which tells us that 0 ≤ H(Y |X) ≤ H(Y ). Moreover, if H(Y |X) = 0, then X determines Y ; if
H(Y |X) = H(Y ), then X and Y are independent.

2.3 Mutual Information

We use mutual information to describe how much information Y contains about X.

Definition 2.3 (Mutual Information). Mutual information of random variable X and Y is
defined as

I(X;Y ) = H(X)−H(X|Y ).

By some computation, we know that

I(X;Y ) =
∑
i,j

P (X = i, Y = j) log
P (X = i, Y = j)

P (X = i)P (Y = j)
= I(Y ;X)

= H(Y )−H(Y |X) = H(X) +H(Y )−H(X,Y ),

which shows that mutual information is symmetric.
With the definition above, we can define joint entropy, conditional entropy and mutual in-

formation with three or more random variables.

Theorem 2.4 (Chain Rule). Multi-variable entropy has the following property:

H(X1, · · · , Xn) = H(X1)+H(X2, · · · , Xn|X1) = H(X1)+H(X2|X1)+· · ·+H(Xn|X1, · · · , Xn−1).

2.4 Relative Entropy

If we measure the probability distribution function of X to be P = (p1, · · · , pn), then we
could design optimal code according to P . However, our measurement could not be exact and
the real distribution function might be Q = (q1, · · · , qn). So the error is∑

i

pi log
pi
qi
.

Definition 2.5 (Relative Entropy, KL-divergence). Let P = (p1, · · · , pn), Q = (q1, · · · , qn) be
two probability distribution function. The relative entropy is defined as

D(P‖Q) =
∑
i

pi log
pi
qi
.

It is trivial that relative entropy is always non-negative. Also, let P = (p1, · · · , pn) and
U = ( 1

n , · · · ,
1
n ), then relative entropy

D(P‖U) =

n∑
i=1

pi log pi + log n = log n−H(P ).

Hence, this is a trick to define entropy using relative entropy.

Theorem 2.6 (Data Processing Inequality). Let X → Y → Z denote three random variables. If
X,Y and Z satisfies Marcov Property, that is: P (Z|X,Y ) = P (Z|Y ), then I(X;Z) ≤ I(X;Y ).
In other words, the information of X cannot increase during this process.
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3 Entropy Rate

Take the case below into consideration: random variable X ∼ B(1, 0.01). The average code
length of X is 1 bit. However, the entropy of X is approximately 0(0.07 to be precise). What
leads to this inconsistency? How to define the efficiency of the code?

Remember that efficiency shall be defined in ratios. A possible solution to the phenomenon
above can be to encode in groups of n each time. Since ACL ≤ H(X) + 1, on this occasion we
get

H(x1, · · · , xn) = 0.07n,ACL ≤ 0.07n+ 1.

As n increases, the value ACL
H converges to 1. In this way, we prove that H is really an infimum.

However, this method will trigger delay in time. Also, we potentially assume that x1, · · · , xn
are independent, which is unrealistic and not often the case. Nevertheless, if we continue to
encode the symbol in groups of t, then

ACL(per symbol) ≤ H(x1, · · · , xt) + 1

t
.

If t is big enough, right hand side is approximately H(x1,··· ,xt)
t . If this value converges, then it

will be meaningful.

Definition 3.1 (Entropy Rate). Entropy rate is defined as

lim
t→∞

H(x1, · · · , xt)
t

(1)

if it is convergent.

Another way of understanding entropy rate is to focus on the additional information caused
by xt, so it can also be defined as

lim
t→∞

H(xt|x1, · · · , xt−1). (2)

By Stolz Theorem, we conclude that 1 and 2 have the same value. Moreover, if X satisfies
Marcov Property, then 2 could be written as

lim
t→∞

H(xt|xt−1).

4 Differential Entropy

In this section, we will consider continuous random variables.
If a continuous random variable has probability density function f(x), it cannot be encoded

with finite bits. However, we still define its entropy as

h(X) = −
∫
f(x) log f(x)dx.

This is called the differential entropy of X. But what does it imply? Does

H(X∆) = −
∑
i

pi log pi

converges to h(X)?
Trivially h(X) diverges to +∞. However,

log
1

∆
+ h(X) = H(X∆).

Similarly, define joint entropy as

h(X,Y ) = −
∫∫

f(x, y) log f(x, y)dxdy.
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Define conditional entropy as

h(X|Y ) = −
∫

dy

∫
dxf(x, y) log f(x|y).

Define mutual information as

Ĩ(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X)

= h(X) + h(Y )− h(X,Y ) =

∫∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy.

In this way, we get that Ĩ(X;Y ) = I(X̃∆; Ỹ∆).

h(X) X −→ X̃∆ H(X̃∆)

h(Y ) Y −→ Ỹ∆ H(Ỹ∆)

Define relative entropy as

K̃L(f‖g) =

∫
f(x) log

f(x)

g(x)
dx.

Similarly, K̃L(f‖g) = KL(X̃∆‖Ỹ∆) when ∆→ 0.

5 Kolmogorov Complexity

As to a deterministic variable, what is its minimum description length? Here, minimum
description length means the minimum length of a program which is required to output the
string. And what Kolmogorov used here is a Turing machine.

Definition 5.1 (Kolmogorov Complexity). Given a universal Turing machine u, for any string
x ∈ {0, 1}∗, the Kolmogorov complexity of x with respect to u is

Ku(x) = min
P :u(P )=x

|P |.

In order to compute Kolmogorov complexity, the language of the program shall be given in
advance. But, does the language matter?

Theorem 5.2. ∀u, u′, there exists a constant C, such that: ∀x,

Ku′(x) ≤ Ku(x) + C(u, u′),

where C is independent from x. (Here, C represents the program we need to translate u into u′).

However, the problem above is incomputable. Even the halting problem is incomputable.

Theorem 5.3. Halting problem is incomputable. In other words, let P be the program and I be
the input. There is no Turing machine M , such that M(P, I) decides whether P would halt on
input I.

Proof. Let I be the program itself. We define a procedure U(P, P ):

Algorithm U(P, P )

Input: a program P
Output: 0 or 1
1: if M(P, P ) = 1 then
2: return 0;
3: else
4: while (1) do
5: endless loop

Let us see what will happen when we input U :

• If M(U,U) = 1, then U will not halt. On this occasion, M(U,U) = 0, implying that U
will halt.

• If M(U,U) = 0, then U will halt. On this occasion, M(U,U) = 1, implying that U will
not halt.

On any case we all get a contradiction, so halting problem is incomputable.
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6 Maximum Entropy Principle

We will only list two facts in this section.

Theorem 6.1. Let random variable X satisfies EX = 0, DX = 1. Then when X satisfies
normal Gaussian distribution N(0, 1),

p(x) =
1√
2π

exp

(
−x

2

2

)
,

the entropy of X gets its maximum value.

Theorem 6.2. Let X be a discrete random variable with only positive integer value. If EX = µ,
then when X satisfies geometry distribution

pi = P (X = i) =
1

µ− 1

(
µ− 1

µ

)i
,

its entropy gets its maximum value.

7 Channel Coding, Channel Capacity

7.1 Channel Coding

Usually we get a noisy channel in practice. How to eliminate the noise? Definitely we can
reduce noise by repetition. However, we could maximize the “distance” between the code.

Consider a map:
{0, 1}n →{0, 1}m

c1, · · · , c2n .

where m > n. We will maximize dH(ci, cj). We already know that the number of the ball with
its radium less than r

2 is
r
2∑

k=0

(
m

k

)
.

We can use Chernoff bound to estimate the value above. Moreover, by Weak Law of Large
Numbers, we know that for random variable X = X1, · · · , Xn with independent and identical
distribution and its expection EX = p, the following fact holds:

P (

∣∣∣∣∣ 1n∑
i

Xi − p

∣∣∣∣∣ ≥ ε) ≤ exp(−O(n)) ≈ exp(−2nε2).

Actually, right hand side is exp
(
−nDB

e (p+ ε‖p)
)
, where

DB
e (p‖q) = p ln

p

q
+ (1− p) ln

1− p
1− q

.

Also, if we want to correct t bits of error, then ∀i 6= j, dH(ci, cj) ≥ 2t+1. If we take efficiency
into consideration, the efficiency of the codes above is defined as m

n .
Now, we aim to find 2n codes in {0, 1}m which satisfy the following requirement:

∀1 ≤ i 6= j ≤ 2n, dH(ci, cj) ≥ δm

where δ ∈
(
0, 1

2

)
is a constant.

Theorem 7.1 (Gilbert-Vashamov Bound). If m and n are defined as above, then the following
inequality holds:

m ≥ 2n

1−H(δ)
.

Here H(δ) = −[δ log δ + (1− δ) log(1− δ)] is its entropy.
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Proof. This proof is a classic proof using probability. Actually, for c1, · · · , c2n ∈ {0, 1}m, ∀i 6= j,

P (dH(ci, cj) < δm) ≤ exp

(
−mDB

e

(
1− δ‖1

2

))
.

Hence,

P (∃i 6= j, dH(ci, cj) < δm) ≤
(

2n

2

)
exp

(
−mDB

e

(
1− δ‖1

2

))
≤ 22n−1−mDB(1−δ‖ 1

2 )

If right hand side is smaller than 1, we conclude that such m is enough. So we have

2n− 1−mDB

(
1− δ‖1

2

)
= 2n−m(1−H(δ)) ≤ 0⇒ m ≥ 2n

1−H(δ)
.

But all theorems above only show the existence of such codes. How to find them in practice?
In other words, how to design an algorithm for decoding and encoding?

Take Hamming Codes as an example: given an encoded code s, we could compute the
Hamming distance of s and each decoded code c. However, its time complexity is exponential.
When n is big enough, the algorithm above is unacceptable. If we use a table for memory,
such decoding process could be done in constant time using hashing table. Nevertheless, space
complexity also matters.

Let m = 7 and n = 4. In this example, our algorithm could correct 1 bit error, which means
that ∀i 6= j, dH(ci, cj) ≥ 3. Let

H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 ,

and define the addition and multiplication in Galois field GF (2). According to the equation
below:

dimH = dim kerH + dim imH,

we know that dim kerH = 4 so kerH has 16 elements. What is the minimum Hamming distance
between the elements in kerH?

First of all, kerH is a linear space so the addition of two elements in kerH is still an elements
in kerH. By simple enumeration we can find out that each element (except 0) has at least 3
‘1’, so

min
ci,cj∈kerH

dH(ci, cj) ≥ 3.

How to correct the 1-bit error? Trivially a mistaken code must have the form of c+ei, where
c ∈ kerH, the ith bit of ei is 1. Hence,

H(c+ ei) = Hc+ Hei = Hei

is the ith column of the matrix H.
How to encode? We have to find a set of base of kerH. Let

ci =

4∑
j=1

xjεj .

What we aim to do is to find a set of base efficiently. Re-arrange H, then

H =

 1
P3×4 1

1

 =

P3×4 I3×3

 .

Let

G7×4 =

(
I4×4

P3×4

)
, .
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It is easy to verify that
HG = 2P3×4 = O3×4,

hence G is a base of kerH. Finally, let m ∈ {0, 1}4 be a 4× 1 vector, then

Gm =

(
m
Pm

)
.

We could extend Hamming code to other k,m, n. Still, it only has the ability to correct 1
bit of error.

7.2 Channel Capacity

Now, we concentrate on how to describe a noisy channel. That is, given input X and output
Y , we have to know P (Y |X). We use mutual information to measure the information brought
by X.

Definition 7.2 (Channel Capacity). Channel capacity is defined as the maximum mutual in-
formation in the channel. In other words,

C = max
p(x)

I(X;Y ).

This subsection will mainly discuss Channel Coding Theorem given by Shannon.

Theorem 7.3 (Shannon: Channel Coding Theorem). Let R be the average amount of informa-
tion of the input and C be the channel capacity.

1. If R < C, then ∀ε > 0, there exists a type of channel coding, such that its probability of
error is less than ε.

2. If R > C, then ∃ε0 > 0, such that there do not exist a type of channel coding of which the
probability of error is less than ε0.

However, before we start our proof of this theorem, we will clarify several basic facts first.
By Weak Law of Large Numbers, let X = X1, · · · be random variables with independent and

identical distribution. Then for ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − EX

∣∣∣∣∣ > ε

)
→ 0(n→ +∞).

Let g be a continuous function, then

P

(∣∣∣∣∣ 1n
n∑
i=1

g(Xi)− Eg(X)

∣∣∣∣∣ > ε

)
→ 0(n→ +∞).

Let p(x) be the probability distribution function of random variable X and g(X) = log p(x).
Hence,

P

(∣∣∣∣∣ 1n
n∑
i=1

log p(Xi)− E log p(X)

∣∣∣∣∣ > ε

)
→ 0(n→ +∞).

It is worth noticing that −E log p(x) is just H(X). The inequality above implies that

P
(

2−n(H(X)+ε) < P (X1, · · · , Xn) < 2−n(H(X)−ε)
)
> 1− δ

when n is big enough.

Definition 7.4. Define a set

An =
{

(x1, · · · , xn) ∈ {0, 1}n : P (x1, · · · , xn) ∈ 2−n(H(X)±ε)
}
.

For any sequence (x1, · · · , xn), if it is an element of An, we call it a typical sequence.
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Typical sequences have some properties(we call them asymptotic equipartition properties):

• P (An) ≥ 1− δ.

• Unstrictly speaking, for any typical sequence (x1, · · · , xn), P (x1, · · · , xn) ≈ 2−nH(X). So
we could estimate the size of An as follows: |An| ≈ 2nH(n).

Similarly, we could define jointly typical sequence.

Definition 7.5. Let (X,Y ) ∼ P (X,Y ). A sequence X1, Y1; · · · , Xn, Yn is called a jointly typical
sequence, if

• P (X1, · · · , Xn;Y1, · · · , Yn) ∈ 2−n(H(X,Y )±ε);

• P (x1, · · · , xn) ∈ 2−n(H(X)±ε);

• P (Y1, · · · , Yn) ∈ 2−n(H(Y )±ε).

Similarly, if we define An as the set of jointly typical sequence, then |An| ≈ 2nH(X,Y ). The
problem is, if we randomly choose a typical sequence of X and a typical sequence of Y , what is
the probability of (X,Y ) be a jointly typical sequence?

Since there are approximately 2nH(X) typical sequences of X and 2nH(Y ) typical sequences
of Y , there could be 2nH(X) · 2nH(Y ) jointly sequences in all. Nevertheless, only 2nH(X,Y ) of
them are jointly typical sequences, so the probability is

p =
2nH(X,Y )

2nH(X) · 2nH(Y )
= 2−nI(X;Y ).

Finally, we will introduce an inequality before the proof starts.

Theorem 7.6 (Fano’s Inequality). Let X,Y be discrete random variable and X ∈ H. We want
to estimate X using Y : X̂ = g(Y ). Then the estimation error

pe = P (X̂ 6= X) ≥ H(X|Y )− 1

log(|H| − 1)
.

Proof. Define a random variable E as

E =

{
0, if X = X̂;

1, otherwise.

It is trivial that H(E|·) ≤ 1. Hence, by chain rule,

H(X,E|Y ) = H(X|Y ) +H(E|X,Y ) = H(X|Y ); (3)

H(X,E|Y ) = H(E|Y ) +H(X|E, Y ) ≤ 1 +H(X|E = 0, Y )(1− pe) +H(X|E = 1, Y )pe

= 1 +H(X|E = 1, Y )pe ≤ 1 + log(|H| − 1)pe.
(4)

By comparing 3 and 4, the following inequality holds:

pe ≥
H(X|Y )− 1

1 + log(|H| − 1)
≥ H(X|Y )− 1

log(|H| − 1)

Now we will start our proof.

Proof. • If R < C, let P (X) be the input such that I(X;Y ) has its maximum value. As
to this X, similarly define P (X|Y ). Let cij with independent and identical distribution
generated from P (X). 

c1 = (c11, · · · , c1n);

c2 = (c21, · · · , c2n);

· · ·
c2nR = (c2nR,1, · · · , c2nR,n).
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If the receiver accept a sequence y1, · · · , yn, the sequence will be decoded as ci, where ci
and y1, · · · , yn are jointly typical sequence. We want to prove that once n is big enough,
the average error rate could be diminished to an arbitrarily small degree.

First of all, only in two cases will the channel coding report an error: no jointly typical
sequence or not unique jointly typical sequence.

– No jointly typical sequence: According to Weak Law of Large Numbers, when n is
big enough, the error rate could be arbitrarily small.

– The jointly typical sequence is not unique: Let (ci, y) and (cj , y) denote jointly typical
sequences. Then ci and cj must be typical sequence. Hence, the probability of this
event is pij = 2−nC . Since i, j range from 1 to nR, the probability of the existence of
nonunique typical sequence

p = (2nR − 1) · 2−nC ≈ 2n(R−C) → 0.

So we complete the first part of the proof.

• If R > C, similarly define M = (c1, · · · , c2nR) and Y be the message we receive. Then

nR = H(M) = H(M |Y ) + I(M ;Y ) ≤ H(M |Y ) + nC.

Hence, H(M |Y ) ≥ n(R− C). By applying 7.6, we know that

pe ≥
n(R− C)− 1

log(2nR − 1)
≈ R− C

R
> 0.

And this is the second part of the theorem.

8 Communication Complexity

Now, we wish to compute f(x, y), where x, y ∈ {0, 1}n and f ∈ {0, 1}. But Alice only has x
and Bob only has y. What is the lower bound of the cost of communication in order to compute
f(x, y)?

If we show f in the form of a matrix, then every bit of communication will divide the rectangle
into two parts and choose one part since we have a protocol in advance. In short, if there are
M rectangles in the matrix with each rectangle all ‘0’ or all ‘1’, then we need at least O(logM)
bits.

Definition 8.1 (Communication Complexity). Communication complexity is defined as the
lower bound of the bits required to compute f(x, y). It is usually written as CC(f).

Definition 8.2. As to a fixed f(x, y), let Mf be its matrix and χ(f) be the number of rectangles
of the best division.

Trivially CC(f) ≥ logχ(f). Also, since rank(A + B) ≤ rankA + rankB, we know that
rankMf ≤ χ(f).

Actually, as to communication complexity, Andrew Yao proved that

logχ(f) ≤ CC(f) ≤ O(log2 χ(f)).

And now, people have other guess of the bound and there are other conjectures about commu-
nication complexity.

Conjecture 8.3 (Log-rank Conjecture).

CC(f) ≤ poly (log(rankMf )) .
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Now, let us end this section with an interesting problem. Suppose that there is a graph
G = (V,E), |V | = n and both Alice and Bob can see the graph. Alice has a clique C in this
graph and Bob has an independent set I in this graph. Define a function f(C, I) as follows:

f(C, I) =

{
1, if C ∩ I 6= ∅;

0, otherwise.

How many bits do we need in order to compute f? Trivially CC(f) ≤ n. We will prove that
O(log2 n) bits is enough.

Proof. We will try to list all vertexes in a matrix. This matrix has at most n rectangles. We
conclude that if two matrices share at least one row, then there exists an edge between two
vertexes. So Alice will have a set of rectangles of which every two share at least one row. Bob
will have a set of rectangles of which every two share at least one column. Since these rectangles
do not share any common space, the rectangles in Bob’s set consists of an independent set in
the graph. Also, the rectangles in Alice’s set consists of a clique. Similarly define the concept of
degree.

In every step, Alice will choose a rectangle R∗x with the smallest degree in his set, and Bob
will choose a rectangle R∗y with the largest degree in his set. After they send the number of the
rectangle in the matrix, we conclude that some rectangles are “invalid”.

First of all, if R ∩ R∗x = ∅, then R shall be ignored. Also, if R ∩ R∗x 6= ∅ but R has a
degree larger than R∗x, then R shall be ignored as well. We will estimate how many rectangles
are ignored each step.

Since Bob will choose after Alice, it is trivial that dx(R∗x) ≤ dx(R∗y). Respectively, Alice
removed at least n− dx(R∗x) rectangles and Bob removed at least n− dy(R∗y) rectangles. Hence,

dx(R∗x) + dy(R∗y) ≤ dx(R∗y) + dy(R∗y) ≤ n.

The inequality above holds because two different rectangles cannot have common row and com-
mon column simultaneously. Finally, we get

max{n− dx(R∗x), n− dy(R∗y)} ≥ 1

2
(2n− dx(R∗x)− dy(R∗y)) ≥ n

2
.

So we removed at least half of the rectangles. So within 2 log2 n bits we can compute f correctly.

9 Fisher Information, Cramer-Rao Inequality

Let us think about the following case: There is a sample X = (X1, · · · , Xn) with independent

and identical distribution and its probability distribution function f(X; θ) =
n∏
i=1

f(Xi; θ). We

wish to estimate θ from X via a mapping ϕ(X) = θ̂ and our goal is to minimize D(θ̂).

Definition 9.1 (Scored Function). Let X = (X1, · · · , Xn) satisfy f(X; θ) with independent and
identical distribution. The scored function is defined as

S(X; θ) =
∂

∂θ
ln f(X; θ).

It is easy to show that the expectation of scored function shall be 0.

ES(X; θ) =

∫
∂

∂θ
ln f(x; θ) · f(x)dx =

∫
f ′θ
f
· fdx

=
∂

∂θ

∫
fdx =

∂

∂θ
1 = 0.

Definition 9.2 (Fisher Information). Fisher information is defined as

I(θ) = DS(X; θ).

11



Similarly we can know that

I(θ) = −E
[
∂2

∂2θ
ln f(X; θ)

]
Definition 9.3 (Unbiased Estimator). Let ϕ(X) be a mapping from X to θ̂ to estimate θ. If
Eϕ(X) = θ, then it is called an unbiased estimator.

Cramer-Rao Inequality tells us that whatever unbiased estimator we choose, a certain amount
of error always exists.

Theorem 9.4 (Cramer-Rao Inequality). For all unbiased estimator ϕ of θ, the following in-
equality holds:

Dϕ(X) ≥ 1

I(θ)
.

Proof.
Dϕ(X) · I(θ) = Dϕ(X) ·D(S)

≥ [E (ϕ(X)− Eϕ(X)) (S − ES)]
2

= (E(ϕ(X)− θ)S)
2

= (Eϕ(X)S)2

=

(∫
ϕ(x)

f ′θ
f
· fdx

)2

=

(∫
∂

∂θ
(ϕ(x)f(x, θ)) dx

)2

=

(
∂

∂θ

∫
ϕ(x)f(x; θ)dx

)2

=

(
∂

∂θ
Eϕ(X)

)2

= 1.

The following definition and theorem can apply in multi-variable situation as well. If we
want to estimate θ = (θ1, · · · , θd) using X = (X1, · · · , Xn), then 9.1 would be

S(X; θ) = ∇θ ln f(X; θ) =

(
∂

∂θ1
ln f, · · · , ∂

∂θd
ln f

)
.

9.2 would be defined as

I(θ) = covS(X; θ) =

(
−E ∂2

∂θi∂θj
ln f(X; θ)

)
dd

.

On this occasion, 9.4 would be

cov(ϕ(X)) ≥ I(θ)−1.

Since both left hand side and right hand side are matrices, the inequality above means that
cov(ϕ(X))− I(θ)−1 is a positive semi-definite matrix.

Theorem 9.5. Let X = (X1, · · · , Xn) and θ = (θ1, · · · , θd). Let q(θ) ∈ R and ϕ(X) be any
unbiased estimator of q(θ). Then

D(ϕ(X)) ≥ ∇θq(θ)T I(θ)−1∇θq(θ).

Proof. First of all,

∇θq(θ) = ∇θ
∫
ϕ(x)f(x; θ)dx =

∫
ϕ(x)∇θf(x; θ)

f(x; θ)

f(x; θ)
dx

=

∫
ϕ(x)∇θ ln f(x; θ)f(x; θ)dx

= E [ϕ(X) · ∇θ ln f(X; θ)] = E [ϕ(X) · S(X; θ)]

= E [(ϕ(X)− Eϕ(X))S(X; θ)] .
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Since S(X; θ) · S(X; θ)T = I(θ), the right hand side of the inequality could be rewritten as
follows:

RHS = E
[
∇θq(θ)T I(θ)−1(ϕ(X)− Eϕ(X))S(X; θ)

]
≤
[
E (ϕ(X)− Eϕ(X))

2
] 1

2 ·
[
E
(
∇θq(θ)T I(θ)−1S(X; θ)S(X; θ)T I(θ)−1∇θq(θ)

)] 1
2

= (Dϕ(X))
1
2 · (E∇θq(θ)T I(θ)−1∇θq(θ))

1
2

= (Dϕ(X))
1
2 · (RHS)

1
2 .

Hence, we know that RHS ≤ Dϕ(X).

Definition 9.6 (Renyi Entropy). For discrete random variable X with its probability distribution
function (p1, · · · , pn) and r > 0, define its Renyi entropy as

Hr(X) =
1

1− r
log

(
n∑
i=1

pri

)
.

We can know that:

• As r → 0, Hr(X)→ log n however its probability distribution function.

• As r → 1, Hr(X)→ H(X) is just its entropy.

• As r → +∞, Hr(X) would be determined by the event with the biggest probability.

lim
r→+∞

Hr(X) = − log max
1≤i≤n

pi.

We will end this section with an application of information theory. As to a positive define matrix
A, verify that f(A) = log detA is a concave function, which means that for two positive definite
matrices A, B and 0 < λ < 1, the following inequality holds:

log det(λA + (1− λ)B) ≥ λ log detA + (1− λ) log detB.

We can prove this property using mathematical techniques. Now we will try to prove it by using
information theory.

Proof. Consider two continuous random variable X1 ∼ N(0,A) and X2 ∼ N(0,B): Define
two random variables Y ∼ B(1, λ) and Z = Y X1 + (1 − Y )X2. It is trivial to prove that the
covariance matrix of Z is λA + (1− λ)B.

Given the covariance matrix, Gaussian distribution has maximum entropy, so

h(Z) ≤ 1

2
log(2πe)n det(λA + (1− λ)B).

Take conditional entropy into consideration: Since entropy has the property of addition, we
know that

h(Z|Y ) =
1

2
λ log(2πe)n det(A) +

1

2
(1− λ) log(2πe)n det(B).

By Jensen’s Inequality: h(Z) ≥ h(Z|Y ), so

log det(λA + (1− λ)B) ≥ λ log detA + (1− λ) log detB.

10 Rate Distortion Theorem

Definition 10.1 (Hamming Distance). Given x, y ∈ {0, 1}n, the Hamming distance between
two strings is defined as

d(x, y) =

n∑
i=1

I(xi 6= yi) =

n∑
i=1

1xi 6=yi .
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According to asymptotic equipartition properties, only a small proportion of {0, 1}n covers
up almost every possible cases.

Definition 10.2 (Distortion Code). Let ϕ be a mapping from Xn to Xn. Say ϕ is an (2nR, n)
distortion code, if the image of ϕ consists of 2nR elements.

Definition 10.3. The distortion associated with (2nR, n) code is defined as

D = Ed(x1, · · · , xn; y1, · · · , yn).

Definition 10.4 (Rate Distortion Function). The rate distortion function R(D) is defined as
the minimum R so that (2nR, n) code exists with its distortion less than D.

Definition 10.5 (Information-Theoretic Rate Distortion Function). Let I denote the informa-
tion. Information-theoretic rate distortion function is defined as

RI(D) = min
P (Y |X):Ed(X,Y )≤D

I(X;Y ).

Theorem 10.6. R(D) = RI(D).

We will end the introduction of these concepts with an example: Let X1, · · ·Xn ∼ B(1, p)
with independent and identical distribution. What about R(D)? Without loss of generation, we
assume that 0 ≤ p ≤ 1

2 .
Trivially when D is big enough, then RI(D) = 0. Let Y = (0, 0, · · · , 0), then Ed(·, ·) = np.

So when D ≥ p, then RI(D) = 0.
Actually, the answer to this problem is

RI(D) =

{
H(p)−H(D), if 0 ≤ D < p;

0, otherwise.

However, due to time limitation, we will omit the proof of the remaining part here.
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