
HourglassSketch: An Efficient and Scalable
Framework for Graph Stream Summarization
Jiarui Guo∗, Boxuan Chen∗, Kaicheng Yang∗, Tong Yang∗, Zirui Liu∗, Qiuheng Yin∗, Sha Wang†,

Yuhan Wu∗, Xiaolin Wang∗, Bin Cui∗, Tao Li†, Xi Peng‡, Renhai Chen‡, and Gong Zhang‡
∗Peking University, China †National University of Defense Technology, China ‡Huawei Technologies Co., Ltd., China
{ntguojiarui, ykc, yangtong, zirui.liu, yuhan.wu, wxl, bin.cui}@pku.edu.cn,
{2100012923, yinqiuheng}@stu.pku.edu.cn, {ws0623zz, taoli_network}@163.com,

{pancy.pengxi, chenrenhai, nicholas.zhang}@huawei.com

Abstract—Graph stream is a special kind of data stream, where
every item coming in sequence represents an edge in a dynamic
graph. Graph stream has wide application in many fields,
including cyber security, social networks and financial fraud
detection. In this paper, we propose HourglassSketch, a two-stage
data structure, for high-accuracy graph stream summarization.
In Stage 1, HourglassSketch uses a CocoSketch to accurately
record a partial collection of large-weight edges. In Stage 2,
HourglassSketch integrates a TowerSketch with a TCMSketch to
approximately record the statistics of most small-weight edges.
In addition, we propose a key technique named Error Funnel
to further reduce its error margin. Theoretical analysis and
experimental results demonstrate that HourglassSketch supports
various kinds of query operation and adapts well to graph stream
storage. HourglassSketch achieves up to 100× smaller error
and 2.7× higher speed than prior work. We also explore the
versatility of HourglassSketch as a hardware-friendly framework
by implementing it on FPGA and P4 platforms. We have released
our codes on GitHub.

I. INTRODUCTION

A. Background and Motivation

Graph is a structure composed of nodes and edges, and
it is generally recognized for its succinct representation of
pairwise relationships [1], [2]. In the era of big data, graph
stands out for its unparalleled capacity to map and interpret the
vast networks of interconnected data, which offers a clear and
efficient way to visualize complex connections. Graph stream,
which combines the feature of both graph and data stream to
form a dynamic graph, is characterized by a series of items
arriving in sequence. Each item in the graph stream represents
an edge (u, v) in the graph, sometimes together with a weight
w or a timestamp t [3]–[5]. Due to the universal representation
of graph stream, it has widespread application across various
of fields, including network monitoring [6], [7], social network

Jiarui Guo, Boxuan Chen, Kaicheng Yang, Tong Yang, Zirui Liu, Qiuheng
Yin, Yuhan Wu, Xiaolin Wang and Bin Cui are with School of Computer
Science, Peking University, Beijing, China.

Sha Wang and Tao Li are with College of Computer, National University
of Defense Technology, Changsha, China.

Xi Peng, Renhai Chen and Gong Zhang are with Theory Lab, Central
Research Institute, 2012 Labs, Huawei Technologies Co., Ltd., Hong Kong
SAR, China.

The first three authors contribute equally. Corresponding author: Tong Yang
(yangtong@pku.edu.cn).

analysis [8], [9], recommendation systems [10], [11] and traffic
management [12]–[14].

However, graph storage is challenging in graph stream
models: many real-world graphs are of huge size [15], [16],
and we have to store the graph in a memory-efficient approach
to avoid taking up too much space. In addition, we have to
achieve high insertion throughput to catch up with high-speed
items in the graph stream [17], [18]. Finally, in order to reflect
as much information from the streaming graph as possible, we
have to support various types of query operations.

Specially, we take the following two types of queries into
consideration in graph stream scenarios in this paper:
• Edge query: Given an arbitrary edge (u, v), report its total

weight f(u, v);
• Node query: Given an arbitrary node u, report the sum

weight f(u) of all edges with tail (head) u.

B. Prior Art and Limitations

We divide existing algorithms on graph stream storage
into two categories: data stream algorithms and graph stream
algorithms.

Data stream algorithms are mainly designed based on data
stream scenarios rather than graph stream scenarios, where
every item in the data stream has a unique key. Since the edge
(u, v) can also be viewed as a key, data stream algorithms
can be used to store graph streams as well. According to
their design goal, these algorithms can be further categorized
as point query algorithms and subset query algorithms. The
former aims to accurately estimate the frequency of any given
key, and many sketches belong to this category [19]–[28]. The
latter aims to estimate the aggregate frequency of an arbitrary
subset by sampling, and these algorithms include Unbiased
Space-Saving (USS) [29] and CocoSketch [30].

However, although these data stream algorithms are at-
tractive in theory, none of them can be directly used for
high-efficient graph stream summarization. As to point query
algorithms, many sketches mainly focus on frequent items,
and they achieve low error for these frequent items at the
sacrifice of infrequent items, so they ignore edges with small
weight when applied to graph stream. Also, many point query
algorithms are not designed for subset query, and they have to
traverse the estimated subset to answer subset query, so they

cannot be used for subset query if the size of the subset is
large, thus not suitable for node query in graph streams. As to
subset query algorithms, they rely on a large subset to lower
the variance of the estimation. Consequently, subset query
algorithms fail to achieve high accuracy when subset query
degenerates into point query with only one key in the subset,
thus are not appropriate for edge query in graph streams.

Graph stream algorithms are generally designed based on
graph stream scenarios. These algorithms include TCMSketch
[31], Auxo [32], GSS [33], gMatrix [34], gSketch [35], MoSSo
[36], Wind-Bell Index [37], LLAMA [38], Sortledton [39],
TEGRA [40], CommonGraph [41], CuckooGraph [42] etc..
The idea of these algorithms is to compress the graph in their
data structure within tight memory constraint and support fast
query. However, the distribution of real graph stream is usually
skew [43]–[46], but TCMSketch does not utilize this prior
distribution to save memory. Also, some edges might appear
in the graph stream more than once, but MoSSo and Wind-Bell
Index cannot cope with parallel edges. In addition, many graph
stream algorithms are designed for accurate graph storage, and
they store the entire graph without approximation, which is
memory-consuming. Even if these algorithms perform well
within large memory, experimental results show that their
performance drop sharply if allocated smaller memory, so they
all have room for improvement in graph stream scenarios.

Recently, time windows has become a popular approach
for managing large data streams by focusing on most recent
data within a predefined time frame [47]–[51]. This method
helps reduce memory constraint by discarding older data that is
considered less relevant. Nonetheless, time windows technique
does not necessarily work on graph stream scenarios, mainly
because it merely records latest data, while many graph-related
tasks, e.g. detecting community evolution [52] or maintaining
the global connectivity of a network [53] rely on tracking of
long-term graph features. Secondly, time windows lack the
flexibility of capturing the continuous changes of the dynamic
graph. They fail to reflect real-time shifts in connectivity or
the emergence of key nodes, thus are less suitable for graph
stream summarization.

C. Our Proposed Solution

In this paper, we propose HourglassSketch for storing
graph stream. HourglassSketch maintains the information of
the graph stream within small memory and simultaneously
achieves high accuracy and throughput. Moreover, Hour-
glassSketch is hardware-friendly: it can be implemented on
FPGA and P4 platforms, which many graph storage solutions
fail to achieve.

The design of HourglassSketch is based on two observa-
tions: 1) To make it suitable for graph stream summarization,
HourglassSketch has to support both edge query (i.e. query
the weight of a given edge) and node query (i.e. query the
aggregated weight of edges with a given tail/head). 2) To
cater for sparse graphs [54]–[56], HourglassSketch has to use
sub-linear memory and separate large-weight and small-weight
edges apart. In addition, HourglassSketch takes advantage of

both data stream algorithms and graph stream algorithms for
efficient graph storage.

HourglassSketch is composed of two stages: Stage 1 is a
modified CocoSketch [30], which is designed for node query
and mainly records edges with large weight; Stage 2 is a
TowerTCMSketch, which originates from TowerSketch [22]
but shares similar data structure with TCMSketch [31]. It is
designed for edge query and mainly records edges with small
weight. All items in the graph stream will be first inserted into
Stage 1, and items which fail to enter Stage 1 will be inserted
into Stage 2 instead. In this way, HourglassSketch supports
edge query by getting its weight in both stages, and supports
node query by finding all edges with given tail (head) node in
Stage 1 and summing up their weight.

However, although the basic version of HourglassSketch
fulfills the need of graph stream summarization, it still has
room for improvement in terms of accuracy. Therefore, we
propose an important optimization method to improve accu-
racy: We add an Error Funnel in HourglassSketch. Once an
edge successfully enters Stage 1, its counter in the highest level
of Stage 2 will be frozen if possible. Frozen counters cannot be
incremented due to hash collision, and the increment operation
will be carried on Error Funnel instead. This operation has
two advantages: Firstly, partial information of large-weight
edges are sometimes kept in Stage 2 due to insertion failure
in Stage 1. We can separate large-weight edges from small-
weight edges by recording the former in Stage 2, and the latter
in Error Funnel; Secondly, TowerTCMSketch originates from
TowerSketch, and both sketches suffer from overestimation
error. By freezing the counter as early as possible, HourglassS-
ketch prevents the accumulating of error as time goes by and
achieves more accurate estimation.

In general, the data structure of HourglassSketch is like
an hourglass: Error Funnel is implemented between Stage 1
and Stage 2, and all items not inserted into Stage 1 will be
inserted into Stage 2 through Error Funnel. Besides, the work
logic of HourglassSketch is unidirectional: just like hourglass,
items can only enter Stage 2 from Stage 1, and cannot
enter in reverse. This property ensures that HourglassSketch
is hardware-friendly and can be deployed on FPGA and P4
tofinos (See our technical report [57] for more details).

This paper makes the following contributions:
• (§III) We propose HourglassSketch, a novel data structure

for graph stream summarization. It is small, fast and ac-
curate, and supports both edge query and node query over
streaming graphs.

• (§IV) We theoretically prove the superiority of HourglassS-
ketch over TCMSketch and show its error bound and time
complexity.

• (§V) We conduct extensive experiments on different
datasets. Experimental results show that HourglassSketch
greatly outperforms existing algorithms in terms of accuracy
and error.

• (Appendix C, [57]) We further extend HourglassSketch to
hardware platforms to verify its deployment flexibility on
FPGA and P4 platforms.

II. BACKGROUND AND RELATED WORK

A. Problem Definition

The symbols frequently used in this paper and their mean-
ings are shown in Table I.

TABLE I: Symbols frequently used in this paper.
Notation Meaning

S The graph stream
(u, v) An arbitrary edge in the graph stream
w Weight of an edge
d Number of arrays in Stage 1
m Number of buckets in each array in Stage 1

hi(., .) ith hash function in Stage 1
Ai ith array in Stage 1
s Number of arrays in Stage 2
nj Number of rows (columns) in jth array in Stage 2
δj Size of counters in jth array in Stage 2

rj(.) jth row hash function in Stage 2
cj(.) jth column hash function in Stage 2
Bj jth array in Stage 2
k Parameter of Error Funnel

We now formally provide the definition of data stream and
graph stream below.

Definition 1. Data Stream. A data stream S is a series
of items {e1, e2, · · · , en, · · · } appearing in sequence. In this
paper, every item ei is a key-value pair (k, v). We assume that
items with the same key can appear multiple times in the data
stream.

Definition 2. Graph Stream. A graph stream S is a series of
items = {e1, e2, · · · , en, · · · } appearing in sequence. In this
paper, every item ei is an edge (u, v) with weight w in a
directed graph, where u denotes the tail of the edge, and v
denotes the head of the edge. We assume that an edge can
appear multiple times in the graph stream, and the weight of
every item is always positive.

B. Related Work

CMSketch and TowerSketch are traditional sketches that are
used in frequency estimation (point query), and CocoSketch is
regarded as the best sketch solution for subset query. Finally,
TCMSketch is the first generalized sketch on graph query.
Since these sketches play an important role in our algorithm,
and some of them are components of our algorithm, we now
introduce these algorithms in detail in this section.

1) CMSketch and TowerSketch:
CMSketch [19] is composed of d counter arrays. Each array

has m counters and is associated with a hash function. When
inserting an item e, CMSketch uses these d hash functions
to locate d counters and increments these counters by 1.
When querying its frequency, CMSketch again checks these d
counters and returns the minimum value as its frequency.

TowerSketch [22] still has d counter arrays but uses
different-sized counters in different arrays. The lower array
has more counters which are smaller in size, and the higher
array has fewer counters which are larger in size. When
inserting an item e, TowerSketch locates d hashed counters

and only increments non-overflowed counters. When querying
its frequency, TowerSketch returns the minimum value of d
hash counters which are not overflowed. Since TowerSketch
still allocates the same size of memory for different array, it
has more small counters for infrequent items, so TowerSketch
estimates their frequency more accurately.

2) CocoSketch:
CocoSketch [30] is composed of d bucket arrays, and each

bucket array has m buckets. Each bucket records the item
and its frequency (weight). To insert an item e with weight
w, CocoSketch uses d hash functions to locate one bucket in
each array. If e is already recorded in any bucket, we just
increment its frequency by w and return; Otherwise, we select
the bucket with the minimum frequency among these d buckets
(suppose the item in the bucket is e′ and its frequency is fe′).
We increment its frequency by w. Then, with probability w

fe′
,

e will replace e′. In this way, CocoSketch provides unbiased
frequency estimation for both an arbitrary item and an arbitrary
subset.

3) TCMSketch:
The idea of TCMSketch [31] originates from CMSketch.

TCMSketch is composed of s counter arrays, but each array
is a 2-dimensional array with n rows and n columns. Each
row is associated with a hash function ri, and each column is
associated with a hash function ci. To insert an edge (u, v)
with weight w in the graph stream, we use ri and u to
locate a row, and ci and v to locate a column. The counter
at (ri(u), ci(v)) in each array will be incremented by w.
When querying its frequency, TCMSketch again uses these
hash functions to locate d counters, and returns the minimum
value as its weight.

III. THE HOURGLASSSKETCH ALGORITHM

In this section, we introduce the algorithm of HourglassS-
ketch. We first propose the basic version of HourglassSketch,
which is composed of a CocoSketch in Stage 1 and a
TCMSketch in Stage 2. Then we replace the TCMSketch with
TowerTCMSketch in Stage 2 to achieve higher accuracy for
small-weight edges. Finally, we introduce the idea of Error
Funnel and propose the final version of HourglassSketch.

A. The Basic Version

The design idea of HourglassSketch is to separate large-
weight edges from small-weight edges, and record these
edges in two stages respectively. Specifically, HourglassSketch
consists of two stages: Stage 1 and Stage 2. Stage 1 is a
CocoSketch to record edges with large weight and supports
node query; Stage 2 is a TCMSketch to record edges with
small weight.

Data Structure: In the basic version of HourglassSketch,
Stage 1 is a modified CocoSketch with d arrays. Each array
is composed of m buckets and each array is associated with a
hash function hi(., .). Each bucket has three fields: key field,
which records the key of an edge; coco counter, which is just
the counter in traditional CocoSketch; and pure counter, which
records the true weight of the edge after entering the bucket.

Stage 2 is a TCMSketch with s arrays. Each counter array
has n rows and n columns and is associated with a row hash
function ri(.) and a column hash function ci(.).

Insertion Operation: To insert an edge (u, v) with weight
w into HourglassSketch, we first use (u, v) to query Stage
1. We use d hash functions h1(u, v), · · · , hd(u, v) to locate
d buckets A1[h1(u, v)], · · · , Ad[hd(u, v)]. Similar to CocoS-
ketch, there are two sub-cases:
Case 1: If (u, v) matches the key in any of the d buckets, we
simply increment its coco counter and pure counter by w and
return.
Case 2: If (u, v) does not match the key in any of the
d buckets, we find the bucket with minimum coco counter
among these d buckets (suppose it is Ak[hk(u, v)] and the
key field in the bucket is (u′, v′)). We increase its coco
counter by w. And then, with probability w

Ak[hk(u,v)].coco
,

(u, v) is inserted into the bucket. If (u, v) successfully enters
the bucket, we insert (u′, v′) and the value of pure counter
into Stage 2 and reset the pure counter as w; Otherwise, we
just insert (u, v) and its weight w into Stage 2.

Query Operation: HourglassSketch supports both edge
query and node query.
1) To query an edge (u, v), we need to query both Stage 1
and Stage 2. Stage 1 returns the coco counter C and the pure
counter P (if (u, v) is not recorded in Stage 1, then C =
P = 0), and Stage 2 returns the minimum value of d mapped
counters T . We report three kinds of estimation:
• an unbiased value f̂(u, v) = C;
• an overestimation value f̄(u, v) = P + T ;
• an underestimation value f(u, v) = P .
2) To query a node u, HourglassSketch only reports an
unbiased value: we traverse Stage 1 to find all edges with
tail u and sum up their coco counter, i.e.

f̂(u) =
∑

Ai[j].key=(u,.)

Ai[j].coco.

A Running Example: For simplicity, we assume d =
2,m = 3, s = 2 and n1 = n2 = 3. Figure 1 shows a running
example of insertion procedure of HourglassSketch. To insert
an edge (u1, v1) with weight 2, we first use a hash function
to map (u1, v1) into one bucket in each array in Stage 1.
Since (u1, v1) is already recorded in A2, we just increment
the coco counter and the pure counter of the bucket by its
weight 2 and return. To insert an edge (u2, v2) with weight
10, we again map one bucket in each array in Stage 1. Since
(u2, v2) does not match any edge recorded in the bucket, we
find the bucket with minimum coco counter among the mapped
buckets (here it is the second bucket in A2). We first increment
its coco counter by 10 (from 5 to 15). Then, with probability
10
15 , (u2, v2) will replace the edge (u3, v3) and enter the bucket
by setting its pure counter as 10, while (u3, v3) with weight 2
will be inserted into Stage 2. With probability 5

15 , (u2, v2) fails
to enter the bucket, and will be inserted into Stage 2 instead.
Suppose (u2, v2) is successfully inserted into the bucket, then
(u3, v3) will be inserted into Stage 2. We map (u3, v3) into

one counter in each array, and the mapped counters will be
incremented by its pure counter (here is 2).

B. From TCMSketch to TowerTCMSketch

The basic version of HourglassSketch can fulfill the need
of graph stream summarization. However, Stage 2 is a TCMS-
ketch, which originates from CMSketch and fails to achieve
high accuracy in data stream scenarios. Since TowerSketch is
the state-of-the-art algorithm on frequency estimation [58], we
propose TowerTCMSketch based on TowerSketch to achieve
high accuracy.

Data Structure: TowerTCMSketch combines the feature
of both TowerSketch and TCMSketch simultaneously. It is
consisted of s counter arrays. However, in TowerTCMSketch,
different arrays use different size of counters, and have differ-
ent number of rows (columns). Specifically, the ith array is a
2-dimensional array Bi with ni rows and ni columns and is
associated with a row hash function ri(.) and a column hash
function ci(.). The size of counters in ith array is δi bits.

Operation: To insert an edge (u, v) with weight w, we
use d row hash functions and d column hash functions to
locate d counters B1[r1(u)][c1(v)], · · · , Bs[rs(u)][cs(v)]. All
these counters will be incremented by w, and if any of
the counter will overflow after increment (e.g. the value in
Bj [rj(u)][cj(v)] exceeds 2δj − 1), we just mark it as an
overflowed counter by setting its value as 2δj − 1. To query
the aggregated weight of an edge (u, v), we again uses 2d
hash functions to find these d counters. TowerTCMSketch will
return the minimum value among d hashed counters which are
not overflowed.

C. Optimization: Error Funnel

To query the total weight of an edge, HourglassSketch has to
query both Stage 1 and Stage 2 to get an overestimation value.
However, Stage 2 originates from TowerSketch (CMSketch)
and suffers from overestimation error in practice. Also, we
notice that an edge (u, v) will only be inserted into Stage 1
if it is recorded in Stage 1, so its associated counter in Stage
2 will only be incremented due to hash collision. Therefore,
we propose the Error Funnel, inspired by OneSketch [23]
and Double-Anonymous Sketch [24]. Its key idea is to freeze
the counter associated with edge (u, v) in Stage 2 after it
enters Stage 1, and unfreeze the counter if (u, v) is evicted
from Stage 1. Frozen counter cannot be incremented due to
hash collision, so HourglassSketch achieves higher accuracy
for these edges.

Data Structure: The data structure of Error Funnel is just
like a funnel. Let t = n2

s be the number of counters in Bs

in Stage 2, and k be the parameter of Error Funnel. For
simplicity, we assume that t is a power of 2. Error Funnel is
divided into several levels. In the highest level (Level 1), every
2k adjacent counters in Bs are grouped together, and every
group has a freezing bucket. In Level 2, every 2k+1 adjacent
counters in Bs are grouped together, and every group has a
freezing bucket. Similarly, in Level l of Error Funnel, every
2k+l−1 adjacent counters in Bs are grouped together, and in

Stage 1

u4, v4, 22, 15 u6, v6, 43, 30u7, v7, 99, 99

u1, v1, 3, 1 u5, v5, 56, 56

A1

A2

(u, v, coco, pure)

u3, v3, 5, 2

Stage 2
2 13 5

4 31 9

0 25 88

7 35 0

91 0 3

10 51 6
B1 B2

u1, v1, 2

u1, v1, 5, 3

u2, v2, 10

insert (u3, v3, 2)
into Stage 2

4

12

w.p. 10/(5+10)

u2, v2, 15, 10

w.p. 5/(5+10)

u3, v3, 15, 2

Fig. 1: Data Structure and Examples of HourglassSketch

Error Funnel

4 5 6 7 …0 1 2 3Bs in Stage 2

1 2 4

3

0

…

…

…

…

…

Level 1

Level 2

Level 3

Level 4

…

Level logt – k + 1

freeze

unfreeze5

Fig. 2: Data Structure and Examples of Error Funnel

the lowest level (Level log t− k + 1) there is only one group
and one freezing bucket. Every freezing bucket has two fields:
index field, which records the index of the frozen counter, and
counter field, which records the weight of all collided edges
after the counter is frozen.

Operation: The Error Funnel operation is triggered when a
new edge (u, v) successfully replace an edge (u′, v′) in Stage
1. In this situation, HourglassSketch will try to freeze the
counter for (u, v) and unfreeze the counter for (u′, v′).
1) To freeze the counter for (u, v), HourglassSketch checks all
freezing buckets in the group that Bs[rs(u)][cs(v)] belongs
to in Error Funnel, starting from Level 1. If Error Funnel
finds a freezing bucket which records (rs(u), cs(v)) in index
field, then the counter has already been frozen before, so
HourglassSketch just return; If Error Funnel finds an empty
bucket, then the freezing bucket will be occupied by (u, v)
by setting its index field as (rs(u), cs(v)) and counter field
as 0. After Bs[rs(u)][cs(v)] is frozen, any increment on
Bs[rs(u)][cs(v)] will be conducted on the counter field in the
freezing bucket instead of Bs[rs(u)][cs(v)].
2) To unfreeze the counter for (u′, v′), HourglassSketch again
checks all freezing buckets in the group that Bs[rs(u

′)][cs(v
′)]

belongs to in Error Funnel. Error Funnel will sum up the
counter field of all buckets whose index field corresponds
with edge (u′, v′). These associated freezing buckets will
be cleared, and the information of these buckets will be
transferred to Stage 2: we find the maximum value of the
sum result and the pure counter of (u′, v′), and increment
Bs[rs(u

′)][cs(v
′)] by this maximum value.

A Running Example: For simplicity, we assume k = 1,
so two counters are grouped together in Level 1 (the highest
level) in Error Funnel. Figure 2 shows a running example of
Error Funnel. Numbers in each grey box shows the index of the
counter, and numbers in each orange box shows the index field
of the freezing bucket. To freeze counter Bs[0], Error Funnel
checks all freezing buckets associated with Bs[0], starting from
Level 1. Error Funnel first finds an empty freezing bucket in
Level 3, so Error Funnel freezes counter Bs[0] in this freezing
bucket by setting its index field as 0, and any further increment
on Bs[0] will be conducted on its counter field instead. To
unfreeze counter Bs[5], Error Funnel again checks all freezing
buckets associated with Bs[5]. The index field of the freezing

bucket in Level 2 is just 5, which shows that the counter was
freezed in this freezing bucket before. Therefore, Error Funnel
unfreezes Bs[5] by obtaining its counter field and clearing this
freezing bucket. Finally, Error Funnel gets the maximum value
of the counter field and the pure counter of the edge, and adds
it to Bs[5] in Stage 2.

D. Our Final Version

Our final version of HourglassSketch is consists of two
stages as above. Stage 1 is a CocoSketch, and Stage 2 is a
TowerTCMSketch. In addition, the Error Funnel is added to
improve accuracy. The full operation of HourglassSketch can
be summarized as follows:

Insertion Operation: To insert an edge (u, v) with weight
w, HourglassSketch first checks Stage 1.
Case 1: (u, v) is already recorded in a bucket. In this situation,
we just insert (u, v) into Stage 1 and return.
Case 2: (u, v) collides with an edge (u′, v′), and (u, v)
replaces (u′, v′) in Stage 1. In this situation, we freeze the
counter for (u, v) and unfreeze the counter for (u′, v′) in Error
Funnel, which is shown in Section III-C.
Case 3: (u, v) collides with an edge (u′, v′), and (u, v) does
not replace (u′, v′) in Stage 1. In this situation, we just insert
(u, v) into Stage 2. We first insert (u, v) into all arrays of
Stage 2 except the last array (i.e. Bs). Then, we check the
Error Funnel: if the index of the hashed counter in Bs (i.e.
Bs[rs(u)][cs(v)]) is already frozen, we insert (u, v) into the
freezing counter in the freezing bucket; otherwise, we insert
(u, v) into Bs by increment Bs[rs(u)][cs(v)] by w.

Query Operation: The final version of HourglassSketch
also supports both edge query and node query.
1) To query an edge (u, v), HourglassSketch first query Stage
1. Suppose Stage 1 returns the coco counter C and the pure
counter P . We then query Stage 2 and Error Funnel. Suppose
Stage 2 returns the minimum value of d mapped counters T ,
and the sum of counter field in freezing buckets with index
field equal to (rs(u), cs(v)) in Error Funnel is F . We report
four kinds of estimation:
• an unbiased value f̂(u, v) = C;
• an overestimation value f̄(u, v) = P + T + F
• a likely overestimation value f̃(u, v) = P + T ;
• an underestimation value f(u, v) = P .

Note that if (u, v) is not recorded in Stage 1, then only the
overestimation value f̄(u, v) is meaningful, since C = P =
0 in this situation, and the information of (u, v) is mostly
recorded in the funnel if its associated counter in Bs is frozen.
2) To query a node u, HourglassSketch only reports an
unbiased value: we again traverse Stage 1, find all edges with
tail u, and sum up their coco counter, just like the basic
version.

E. Discussion: Innovative Techniques of HourglassSketch

Our proposed solution, HourglassSketch is composed of
three components: CocoSketch in Stage 1, TowerTCMSketch
in Stage 2, and Error Funnel in the intermediary layer. While
the idea of these data structures are inspired by prior work, our
approach combines them in novel ways that significantly im-
proves efficiency and scalability in large-scale graph streams.
To better showcase the novelty of HourglassSketch, we high-
light the specific techniques introduced in each component as
below:

Technique 1: Enhancing CocoSketch with the pure
counter in Stage 1. CocoSketch is widely used in net-
work measurement for accurate and unbiased subset query.
However, two-stage sketches typically require precise weight
tracking for heavy edges in Stage 1 and more approximate
handling of light edges in Stage 2 [17], [21], [59], [60]. The
unbiasedness of CocoSketch is designed for subset queries,
which does not distinguish between heavy and light edges
in the same way that a two-stage approach does. To cater
for high-performance graph stream summarization within two-
stage sketches, we modify CocoSketch in Stage 1 by adding
pure counter in each bucket. Different from traditional Co-
coSketch with only one coco counter in each bucket, each
bucket in Stage 1 now has two counters: coco counter just
as traditional CocoSketch, and pure counter to maintain the
true weight of an edge after it enters Stage 1. In this way,
HourglassSketch achieves accurate edge query by accessing
the pure counter, and still supports node query by accessing
the coco counter.

Technique 2: Combining TowerSketch and TCMSketch
in Stage 2. TowerSketch is widely used in network systems
for efficiently managing flow size through its layered structure,
and TCMSketch is the first sketch specially designed for
handling large-scale graph streams. However, although both
sketches are considered state-of-the-art in their respective
fields, no prior work has explored the possibility of com-
bining them together to achieve more precise graph stream
summarization. We introduce TowerTCMSketch that integrates
the strengths of both sketches: TowerTCMSketch inherits the
feature of TCMSketch of hashing u and v separately to
efficiently store graph streams; In addition, TowerTCMSketch
utilizes the idea of different-size counters in different arrays
to maintain high accuracy for light edges. The combination of
both sketches allows TowerTCMSketch to record edges with
low error, thus improving query accuracy for both heavy and
light edges in graph streams.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 01 E 0
1 E 1
1 E 2
1 E 3
1 E 4
1 E 5

e
dg

es

e d g e w e i g h t

 t r u e r e p o r t e d

Fig. 3: Comparison of True and Reported Distribution

Technique 3: Implementing hardware-friendly Error
Funnel for error reduction. Two-stage sketches typically
retrieve results from both parts and sum them up to return
the query result. However, these sketches sometimes suffer
from overestimation error caused by hash collision, making it
crucial to design novel techniques to minimize such error. Prior
work, such as OneSketch [23] and Double-Anonymous Sketch
[24] introduced complex data structures and sophisticated
operations to address hash collisions. While these algorithms
achieve high accuracy, their logic is no longer unidirec-
tional, resulting in reduced hardware compatibility and posing
challenges for efficient hardware implementation. To address
these challenges, we propose Error Funnel as a hardware-
friendly approach to reduce the error in HourglassSketch: Error
Funnel automatically separates heavy and light edges apart by
recording partial information of heavy edges in Stage 2, and
storing light edges in Error Funnel. Notably, HourglassSketch
still maintains a unidirectional workflow: items pass through
Stage 1, then Error Funnel, and finally Stage 2. This property
guarantees that HourglassSketch reduces overestimation error
without compromising hardware-friendliness.

In general, HourglassSketch integrates the advantages of
different data structures in a novel approach to enhance pre-
cision and efficiency. We analyze the edge weight distribution
of the real graph stream and the distribution after processed by
HourglassSketch in Figure 3 using CAIDA dataset [61], and
find that the two distributions are highly similar, demonstrating
the potential of HourglassSketch as an efficient and scalable
framework for accurate graph stream summarization.

IV. MATHEMATICAL ANALYSIS

In this section, we propose the mathematical property of
HourglassSketch. We first derive error bound for the basic ver-
sion of HourglassSketch to show its superiority over TCMS-
ketch. Then we analyze the TowerTCMSketch and show its
error bound. Next, we analyze the optimized HourglassSketch
with Error Funnel. Finally, we show the time complexity of
HourglassSketch. Due to space constraint, we put detailed
proof in our technical report on GitHub [57].

A. Analysis of the Basic Version

In this section, we show the error bound of TCMSketch and
the basic version of HourglassSketch. Since the basic version
of HourglassSketch uses a TCMSketch in Stage 2, we first cite
the error bound for TCMSketch, which is proved in [31].

Theorem 3. Let n be the number of rows (columns) in each
array, and s be the number of arrays in TCMSketch. For an
arbitrary edge (u, v), suppose no other edge has tail u or
head v. Let f(u, v) be its aggregated weight, and f̄(u, v) be
its weight reported by TCMSketch. Let Nd be the sum of weight
of all edges in the graph stream. For any small positive number
ε, TCMSketch guarantees

P (f̄(u, v) ≥ f(u, v) + ε) ≤
(
Nd

εn2

)s

. (1)

However, TCMSketch does not discuss the error bound if
more than one edges share the same head (tail) in [31]. In
fact, the following theorem holds in this situation:

Theorem 4. For an arbitrary edge (u, v), let f(u, v) be its
aggregated weight, and f̄(u, v) be its weight reported by
TCMSketch. Let Ns be the sum of weight of edges with head
u or tail v, and Nd be the sum of weight of edges otherwise.
For any small positive number ε, TCMSketch guarantees

P (f̄(u, v) ≥ f(u, v) + ε) ≤
(
Ns

εn
+

Nd

εn2

)s

. (2)

Remark. If Ns = 0, then the RHS of Equation 2 is just(
Nd

εn2

)s
, so Theorem 3 is a special case of Theorem 4. Also, if

both u and v are not heavy nodes (nodes with large weight),
then Ns will be close to 0, so the RHS of Equation 2 is close
to
(
Nd

εn2

)s
. However, if u or v is a heavy node, then Ns will

be very large, so TCMSketch does not perform well in this
situation.

Next, we prove that f̄(u, v) = P + T is indeed an overes-
timation value, and f(u, v) = P is indeed an underestimation
value for the total weight of edge (u, v).

Theorem 5. For an arbitrary edge (u, v), let f(u, v) be its
aggregated weight. We have

f(u, v) ≤ f(u, v) ≤ f̄(u, v). (3)

Corollary 6. For an arbitrary edge (u, v), let f(u, v) be its
aggregated weight, and f̄(u, v) be the overestimation value
reported by the basic version of HourglassSketch. Let N ′

s be
the sum of weight of edges inserted into Stage 2 with head u
or tail v , and N ′

d be the sum of weight of edges inserted
into Stage 2 otherwise. For any small positive number ε,
HourglassSketch guarantees

P (f̄(u, v) ≥ f(u, v) + ε) ≤
(
N ′

s

εn
+

N ′
d

εn2

)s

. (4)

Remark. Since N ′
s is usually much smaller than Ns, and N ′

d

is usually much smaller than Nd, Theorem 5 clearly shows
the superiority of HourglassSketch over TCMSketch.

B. Analysis of TowerTCMSketch

In this section, we first analyze the error bound of Tow-
erTCMSketch, then we use its error bound to show the error
bound of HourglassSketch after replacing TCMSketch with
TowerTCMSketch in Stage 2.

Theorem 7. Let nj be the number of rows (columns) in jth

array in TowerTCMSketch, and s be the number of arrays in
TowerTCMSketch. Suppose jth array in TowerTCMSketch uses
δj bits counters, and δ1 ≤ δ2 ≤ · · · ≤ δs. For an arbitrary
edge (u, v), let f(u, v) be its aggregated weight, and f̄(u, v)
be its weight reported by TowerTCMSketch. Ns and Nd are
defined similarly as above. For any small positive number ε,
when 2δt−1 − 1 ≤ f(u, v) + ε < 2δt − 1, TowerTCMSketch
guarantees

P (f̄(u, v) ≥ f(u, v) + ε) ≤
s∏

j=t

(
Ns

εnj
+

Nd

εn2
j

)
. (5)

Corollary 8. For an arbitrary edge (u, v), let f(u, v) be its
aggregated weight, and f̄(u, v) = P+T be the overestimation
value reported by HourglassSketch with TowerTCMSketch in
Stage 2. nj , δj , s,N

′
s, N

′
d are defined similarly as above. For

any small positive number ε, when 2δt−1−1 ≤ T+ε < 2δt−1,
HourglassSketch guarantees

P (f̄(u, v) ≥ f(u, v) + ε) ≤
s∏

j=t

(
N ′

s

εnj
+

N ′
d

εn2
j

)
. (6)

Remark. Since Stage 1 filters large-weight edges in advance,
edges inserted into Stage 2 usually has smaller weight. These
edges has smaller t, and nj is larger after we replace
TCMSketch with TowerTCMSketch, so the RHS of Equation
6 is smaller than RHS of Equation 4, and the accuracy of
HourglassSketch improves significantly (See in Section V for
more details).

C. Analysis of the Optimized Version

In this section, we first show that f(u, v) and f̄(u, v) are
still underestimation and overestimation value of f(u, v). Then
we analyze the underestimation error of f̂(u, v). Finally we
analyze the space cost for Error Funnel.

Theorem 9. For an arbitrary edge, let f(u, v) be its aggre-
gated weight. We still have

f(u, v) ≤ f(u, v) ≤ f̄(u, v). (7)

Theorem 10. Suppose (u, v) enters Stage 1 for the first time
and is never evicted from Stage 1. Among all edges inserted
into Stage 2 before (u, v) enters Stage 1, let Ñ ′

s be the sum
of weight of edges with head u or tail v , and Ñ ′

d be the
sum of weight of edges otherwise. N ′

s, N
′
d and t are defined

similarly in Corollary 6 and 8. For any small positive number
ε, if (u, v) occupies an freezing bucket in Error Funnel, then
HourglassSketch guarantees

P (f̃(u, v) ≥ f(u, v)+ε) ≤

(
Ñ ′

s

εn
+

Ñ ′
d

εn2

)
·
(
N ′

s

εn
+

N ′
d

εn2

)s−1

.

(8)
if we use TCMSketch in Stage 2, and

P (f̃(u, v) ≥ f(u, v)+ε) ≤

(
Ñ ′

s

εns
+

Ñ ′
d

εn2
s

)
·
s−1∏
j=t

(
N ′

s

εnj
+

N ′
d

εn2
j

)
(9)

0 2 0 4 0 6 0 8 0 1 0 00

1 0 0

2 0 0
3 0 0

4 0 0

5 0 0

i n s e r t e d i t e m s (m i l l i o n)

Er
ror

 e a r l y m i d l a t e

Fig. 4: Relationship between
Error and Time

1 2 3 4 5 60
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

rat
io

k
Fig. 5: Ratio of Memory Us-
age of Error Funnel to Bs

if we use TowerTCMSketch in Stage 2.

Based on Theorem 4 and Theorem 7, the error of TCMS-
ketch and TowerTCMSketch arises from all edges colliding
with (u, v), and Corollary 6 and Corollary 8 show that the error
of HourglassSketch (basic version) arises from all colliding
edges entering Stage 2. However, according to Theorem 10,
the error of HourglassSketch (optimized version) only arises
from colliding edges that enters Stage 2 before (u, v) enters
Stage 1, and error will not increase after (u, v) occupies
a bucket in Error Funnel. Hence, the optimization version
of HourglassSketch has smaller error for heavy edges. In
addition, the earlier an edge (u, v) enters Stage 1 and occupies
a freezing bucket, the more accurate its weight estimation is.

To measure the property of Error Funnel, we generate three
identical graph stream datasets with a fixed edge (u, v) coming
at different time using CAIDA dataset [61]. We insert three
datasets into HourglassSketch respectively and measure the
error (i.e. |f̃(u, v)−f(u, v)|) simultaneously. The experimental
results (Figure 4) show that the error of (u, v) is the smallest
if it comes very early. In this situation, few edges collides with
(u, v), so f̂(u, v) is close to f(u, v) and the error is constant
after (u, v) enters Stage 1; the measurement error is larger
if (u, v) arrives at the midpoint of the dataset, and the error
peaks if (u, v) comes at a very late time. The Error Funnel is
already full if (u, v) comes very late, so (u, v) cannot get a
freezing bucket in Error Funnel, and its error accumulates to
a very high level.

Theorem 11. Assume that t = n2
s is a power of 2, and the

size of the counter field in Error Funnel is δ′s bits. Then the
memory cost of Error Funnel is at most (k+δ′s+1)·2log t−k+1

bits.

Remark. Since Error Funnel usually record edges with small
weight, δ′s is usually smaller than δs. For example, when δs =
16, δ′s = 8 and k ≥ 3, the extra memory usage is smaller than
20% (see in Figure 5), so Error Funnel with small memory is
capable of reducing the error of HourglassSketch.

D. Time Complexity

Theorem 12. Assume that we use TowerTCMSketch in Stage
2, and Error Funnel is used to reduced error. The time com-
plexity to insert an edge (u, v) is at most O(d+log ns−k+s).

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of HourglassS-
ketch through extensive experiments. First, we describe the
experimental setup in Section V-A. Then, we compare the
performance of HourglassSketch with state-of-the-art solu-
tions and show its superiority in Section V-B. We show
how parameter settings affect HourglassSketch performance in
Section V-C. We also provide analyses on HourglassSketch in
Section V-D. Finally, we implement HourglassSketch on Neo4j
graph database as a case study to demonstrate its deployment
flexibility in Section V-E. All related codes are released on
GitHub anonymously [57].

A. Experimental Setup

Implementation: We implement HourglassSketch and all
other algorithms in C++. In all experiments, we use Bob Hash
[62] with different hash seeds to implement the hash functions.

Computation Platform: We conducted all the experiments
on a server with one 18-core processor and 128 GB DRAM
memory. The processor has 64KB L1 cache, 1MB L2 cache
for each core, and 24.75MB L3 cache shared by all cores.

Datasets: We use four kinds of datasets. In all experiments,
we regard the weight of all edges as 1 in the graph stream.
1) CAIDA Dataset: The CAIDA dataset is streams of anony-
mous IP traces collected from 2016 by CAIDA [61]. CAIDA
identifies each flow by the five-tuples: source and destination
IP address, source and destination port, protocol. We use
source IP address as u and destination IP address as v. We
use 100 million items.
2) DBLP Dataset: We extract 919763 authors as nodes and 10
million author-pairs as edges from DBLP archive [63]. Since
the co-author relationship is mutual, we treat both (u, v) and
(v, u) as edges in the directed graph if author u co-authors
with author v.
3) Network Dataset: The network dataset [64] contains users’
email communication history. Each item has three values
u, v, t, which means user u sends an email to user v at time
t. We use 420045 items.
4) Synthetic Dataset: We generate the Synthetic dataset
following the Zipfian distribution with α = 1. We use 100
million items.

Metrics: HourglassSketch supports both edge query and
node query, so we measure the performance of HourglassS-
ketch in both tasks. For simplicity, we only introduce the
metrics used in edge query, and metrics used in node query
can be defined similarly.
1) ARE: Let f(u1, v1), · · · , f(u|E|, v|E|) be the real weight of
all edges, and f̂(u1, v1), · · · , f̂(u|E|, v|E|) be their estimated
weight mentioned in Section III-D. The Average Relative Error
(ARE) is defined as 1

|E|
∑|E|

i=1
|f̂(ui,vi)−f(ui,vi)|

f(ui,vi)
.

2) AAE: Let f(u1, v1), · · · , f(u|E|, v|E|) be the real weight of
all edges, and f̂(u1, v1), · · · , f̂(u|E|, v|E|) be their estimated
weight. The Average Absolute Error (AAE) is defined as
1

|E|
∑|E|

i=1 |f̂(ui, vi)− f(ui, vi)|.

3) F1 Score: F1 Score is only used in top-k detection. It
is defined as 2×RR×PR

RR+PR , where PR = Reported top-k
Reported edges , RR =

Reported top-k
k .

4) Throughput: We use million of operations (insertions and
queries) per second (Mops) to measure the throughput. We
repeat the experiment for 10 times and calculate the average
results as our throughput.

B. Comparison with Prior Work

In this section, we run HourglassSketch on four datasets and
compare HourglassSketch with three state-of-the-art solutions:
TCMSketch [31], Auxo [32] and GSS [33]. We compare the
performance of these algorithms on both edge query and node
query. We also measure the running speed of these algorithms.
As to top-k edge/node detection, we set k to 1% of the number
of edges/nodes in the graph stream.

1) Comparison on Edge Query:
We conduct experiments on both per-edge weight estimation

and top-k edge detection. The experimental results (Figure
6-8) show that HourglassSketch outperforms all state-of-the-
art algorithms on edge query. On Network dataset, the AAE
of HourglassSketch is only 0.83 within in 100KB memory,
which shows that HourglassSketch performs well even within
tight memory constraint. The results also demonstrate that
HourglassSketch stands out on top-k edge detection. The F1
Score of HourglassSketch is greater than 0.8 when memory is
20MB on CAIDA dataset. On synthetic dataset, HourglassS-
ketch finds almost all top-k edges when memory is greater than
40MB, and the ARE of weight estimation for top-k edges is
smaller than 0.05.

2) Comparison on Node Query:
We conduct experiments on both per-node weight estimation

and top-k node detection. The experimental results (Figure 9-
11) show that HourglassSketch exhibits superior performance
on node query. The AAE of HourglassSketch is on average
1133×, 46.7×, 3.7×, 43.67× smaller on four datasets on per-
node weight estimation. On top-k node detection task, the F1
Score of HourglassSketch reaches 85%, and the ARE is close
to 0.1 on CAIDA dataset within 40MB memory, while other
algorithms do not find most top-k nodes.

3) Comparison on Throughput:
The experimental results (Figure 12-14) show that the

throughput of HourglassSketch is only lower than TCMSketch.
The insertion throughput of HourglassSketch is all higher
than 2 Mops on four datasets. In addition, the edge query
throughput of HourglassSketch is all higher than 3 Mops,
and its node query throughput is the highest among the four
algorithms. Even if TCMSketch queries the weight of an edge
faster, it has to check the whole row (column) in each array
for node query, hence its node query throughput falls off.

C. Experiments on Parameter Settings

In this section, we measure the effects of some key pa-
rameters of HourglassSketch, namely, the number of arrays
in Stage 1 and the ratio of the memory usage of Stage 1 to
the total memory usage ratio. We set the memory usage to

1800KB, 2400KB and 3000KB. We use k = 2, s = 4 and set
δ1 = 2, δ2 = 4, δ3 = 8, δ4 = 16. We conduct experiments on
CAIDA dataset, and use AAE of edges to evaluate the effects
of these parameters.

Effects of d (Figure 15): The experimental results show
that the best option of d is 2. In this experiment. we vary
d from 1 to 6, and results show that the performance of
HourglassSketch does not differ significantly when d ≥ 2.
However, since HourglassSketch has to check every array in
Stage 1 to insert an item, HourglassSketch will have lower
throughput if we set a larger d. As a result, we set d = 2 in
other experiments.

Effects of ratio (Figure 16): The experimental results show
that the best option of ratio is among 0.1 and 0.2. In this
experiment, we vary ratio from 0.05 to 0.3 in a step of 0.05.
The results show that the performance of HourglassSketch
peaks when ratio is among 0.1 and 0.2. In fact, setting a larger
ratio can store large-weight edges more accurately in Stage
1. However, only a small portion of edges in the graph stream
have large weight, so we need to allocate sufficient memory
to Stage 2 to ensure that small-weight edges can be stored
accurately. Taking both cases into account, we set ratio = 0.1
by default.

D. Analysis on HourglassSketch

In this section, we analyze the effect of TowerTCMSketch
and Error Funnel in HourglassSketch. We also measure the
error of HourglassSketch on light edges and nodes (i.e. edges
and nodes with small weight) and on large graph streams.
We conduct experiments on CAIDA dataset. Due to space
constraint, we put experiments on large graph streams in our
technical report on GitHub [57].

Effects of TowerTCMSketch (Figure 17): We conduct ex-
periments with TCMSketch in Stage 2 and TowerTCMSketch
in Stage 2 on per-edge weight estimation, and experimental re-
sults show that replacing TCMSketch with TowerTCMSketch
will significantly lower ARE of edges. In fact, the superiority
of TowerTCMSketch over TCMSketch can be explained by
the truth that the overall accuracy of TowerSketch is much
higher than CMSketch. Therefore, using TowerTCMSketch
instead of TCMSketch will definitely reduce the error of
HourglassSketch.

Effects of Error Funnel (Figure 18): We conduct ex-
periments with and without Error Funnel in HourglassSketch
on top-k edge detection, and experimental results show that
adding Error Funnel can improve accuracy by 30% within
tight memory. Even if TowerTCMSketch estimates the weight
of edges accurately, it still has room for improvement in terms
of large-weight edges. As TowerTCMSketch has larger error
for these edges, Error Funnel can automatically separate edges
with different weight apart. Error Funnel also slightly reduces
top-k edge query error when memory is large.

Experiments on Light Edges and Nodes (Figure 19-20):
We conduct experiments on light edges and nodes query on
HourglassSketch and TCMSketch, and experimental results
show that HourglassSketch achieves accurate estimation for

1 0 2 0 3 0 4 0 5 0 6 0
- 2
0
2
4
6
8

log
(A

AE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 0- 6
- 4
- 2
0
2
4

log
(A

AE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1
- 4
- 2
0
2
4
6

log
(A

AE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 0- 4
- 2
0
2
4
6

log
(A

AE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 6: AAE of Edges on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 0- 8
- 7
- 6
- 5
- 4
- 3
- 2
- 1

log
(A

RE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 0- 8
- 6
- 4
- 2
0
2

log
(A

RE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1- 6

- 4

- 2

0

2

log
(A

RE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 0
- 6
- 4
- 2
0
2

log
(A

RE
-ed

ge
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 7: ARE of Top-k Edges on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 10
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore
M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 8: F1 Score of Finding Top-k Edges on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 0
4
6
8

1 0
1 2
1 4
1 6

log
(A

AE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 0
4
6
8

1 0
1 2
1 4

log
(A

AE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 17
8
9

1 0
1 1
1 2

log
(A

AE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 0
4
6
8

1 0
1 2
1 4
1 6

log
(A

AE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 9: AAE of Nodes on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 0
- 4
- 2
0
2
4
6

log
(A

RE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 0- 2

0

2

4

6

log
(A

RE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1- 2
0
2
4
6
8

log
(A

RE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 0
- 2

0

2

4

6

log
(A

RE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 10: ARE of Top-k Nodes on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 10
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 00
0 . 2
0 . 4
0 . 6
0 . 8

1

F1
 Sc

ore

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 11: F1 Score of Finding Top-k Nodes on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 00
2
4
6
8

1 0
1 2

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 00
2
4
6
8

1 0
Th

rou
gh

pu
t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 10
2
4
6
8

1 0
1 2

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 00
2
4
6
8

1 0
1 2

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 12: Insertion Throughput on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 0
1
2
3
4
5

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 00

2

4

6

8

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 10
3
6
9

1 2
1 5
1 8

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 00

2

4

6

8

Th
rou

gh
pu

t
M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 13: Edge Query Throughput on Different Datasets

1 0 2 0 3 0 4 0 5 0 6 00

1

2

3

4

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(a) CAIDA

1 5 1 8 2 1 2 4 2 7 3 00

1

2

3

4

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(b) DBLP

0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 10
2
4
6
8

1 0
1 2
1 4

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(c) Network

1 0 2 0 3 0 4 0 5 0 6 00
1
2
3
4
5

Th
rou

gh
pu

t

M e m o r y (M B)

 O u r s T C M S k e t c h
 A u x o G S S

(d) Synthetic

Fig. 14: Node Query Throughput on Different Datasets

1 2 3 4 5 60
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

AA
E-e

dg
e

d

 2 0 M B 4 0 M B
 6 0 M B

Fig. 15: Effects of d

0 . 0 5 0 . 1 0 . 1 5 0 . 2 0 . 2 5 0 . 30
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

AA
E-e

dg
e

r a t i o

 2 0 M B 4 0 M B
 6 0 M B

Fig. 16: Effects of ratio

1 0 2 0 3 0 4 0 5 0 6 0
0
3
6
9

1 2
1 5

AR
E-e

dg
e

M e m o r y (M B)

 T C M S k e t c h

 T o w e r T C M S k e t c h

Fig. 17: Effects of Tow-
erTCMSketch

2 0 4 0 6 0 8 0 1 0 0
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

AA
E-e

dg
e

M e m o r y (M B)

 w w / o

Fig. 18: Effects of Error
Funnel

1 0 2 0 3 0 4 0 5 0 6 00
2
4
6
8

1 0

AA
E-e

dg
e

M e m o r y (M B)

 O u r s T C M S k e t c h

(a) AAE

1 0 2 0 3 0 4 0 5 0 6 00
1
2
3
4
5

AR
E-e

dg
e

M e m o r y (M B)

 O u r s T C M S k e t c h

(b) ARE

Fig. 19: Experiments on Light Edges

1 0 2 0 3 0 4 0 5 0 6 0
4
6
8

1 0
1 2
1 4
1 6

log
(A

AE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h

(a) AAE

1 0 2 0 3 0 4 0 5 0 6 00
3
6
9

1 2
1 5

log
(A

RE
-no

de
)

M e m o r y (M B)

 O u r s T C M S k e t c h

(b) ARE

Fig. 20: Experiments on Light Nodes

P 7 1 P 9 94
4 . 5

5
5 . 5

6
6 . 5

7
7 . 5

8

La
ten

cy
(m

s)

 w / o w

(a) Insert
P 7 1 P 9 9

1 E 3

1 E 4

1 E 5

1 E 6

1 E 7

1 E 8

La
ten

cy
(ns

)

 w / o w

(b) Edge Query
P 7 1 P 9 91 E 3

1 E 4

1 E 5

1 E 6

1 E 7

1 E 8

La
ten

cy
(ns

)

 w / o w

(c) Node Query

Fig. 21: Tail Latency on Neo4j Graph Database

light edges and nodes, while TCMSketch fails to. The AAE
of HourglassSketch on light edge query is smaller than 1 when
memory is 20MB, as HourglassSketch accurately records light
edges in Stage 2 using TowerTCMSketch. Also, TCMSketch
has to sum up all counters in a row (column) for node query,
and these counters tend to overflow due to hash collision, so
its estimating error exceeds that of HourglassSketch.

E. Experiments on Neo4j Graph Database
In this section, we implement HourglassSketch to accelerate

edge and node query in real graph databases.
Background: The Neo4j graph database [65] is a widely-

used system known for its high performance, robustness and
flexibility. To support various query operations, Neo4j stores
the graph in the form of an adjacency list, which is well-
suited for sparse graphs. However, answering edge and node
queries requires traversing the entire list, which has room for
improvement with HourglassSketch.

Implementation: Similar to prior work [37], we integrate
an extra instance of HourglassSketch into Neo4j using Java.
When inserting an edge (u, v) into Neo4j, we also insert it into
HourglassSketch. To perform edge and node query, we query
HourglassSketch to retrieve the results. We allocate 10MB
memory for HourglassSketch, and use CAIDA dataset.

Experiments (Figure 21): We measure the tail latency
of insertion, edge query and node query operation with and
without HourglassSketch, and experimental results show that
HourglassSketch significantly accelerates query operation in
Neo4j graph database. The insertion latency of Neo4j remains
almost unchanged after implementing HourglassSketch, with
a worst-case slowdown of merely 0.1ms. In comparison,

HourglassSketch is 2-3 orders of magnitude faster than the
original Neo4j in terms of query performance. The P90 edge
query latency is approximately 1µs with HourglassSketch, and
over 60ms without; The P90 node query latency in Neo4j is
also greatly reduced from 2ms to 10µs after adding Hour-
glassSketch, demonstrating the superiority of HourglassSketch
in modern graph databases.

VI. CONCLUSION

Graph stream storage is important in many fields. In this
paper, we present a novel data structure, HourglassSketch,
for accurate graph stream summarization. HourglassSketch
uses two sketches, CocoSketch and TowerTCMSketch to store
the graph, and the Error Funnel is added in the middle as
optimization to reduce error. We give theoretical guarantees for
HourglassSketch by strict derivation. Extensive experimental
results show that HourglassSketch is faster, more accurate and
more hardware-friendly.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their constructive comments. This work was supported in
part by the National Key R&D Program of China (No.
2022YFB2901504), and in part by the National Natural
Science Foundation of China (NSFC) (No. U20A20179,
62372009, 624B2005), research grant No. SH-2024JK29, and
High Performance Computing Platform of Peking University.

REFERENCES

[1] Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with
graph convolutional networks via importance sampling. arXiv preprint
arXiv:1801.10247, 2018.

[2] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui,
and Philip S Yu. Heterogeneous graph attention network. In The world
wide web conference, pages 2022–2032, 2019.

[3] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri,
and Jian Zhang. Graph distances in the data-stream model. SIAM Journal
on Computing, 38(5):1709–1727, 2009.

[4] Yuchen Zhao and Philip S Yu. On graph stream clustering with side
information. In Proceedings of the 2013 SIAM International Conference
on Data Mining, pages 139–150. SIAM, 2013.

[5] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD
Record, 43(1):9–20, 2014.

[6] Hristo Djidjev, Gary Sandine, Curtis Storlie, and Scott Vander Wiel.
Graph based statistical analysis of network traffic. In Proceedings of
the Ninth Workshop on Mining and Learning with Graphs, 2011.

[7] Francesco Zola, Lander Segurola-Gil, Jan Lukas Bruse, Mikel Galar, and
Raúl Orduna-Urrutia. Network traffic analysis through node behaviour
classification: a graph-based approach with temporal dissection and data-
level preprocessing. Computers & Security, 115:102632, 2022.

[8] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis:
A survey. ACM Computing Surveys (CSUR), 47(1):1–36, 2014.

[9] Charu C Aggarwal. An introduction to social network data analytics.
Springer, 2011.

[10] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. Ten-
centrec: Real-time stream recommendation in practice. In Proceedings
of the 2015 ACM SIGMOD international conference on management of
data, pages 227–238, 2015.

[11] Youwei Wang, Weihui Dai, and Yufei Yuan. Website browsing aid:
A navigation graph-based recommendation system. Decision support
systems, 45(3):387–400, 2008.

[12] Zainab Abbas, Paolo Sottovia, Mohamad Al Hajj Hassan, Daniele
Foroni, and Stefano Bortoli. Real-time traffic jam detection and
congestion reduction using streaming graph analytics. In 2020 IEEE
International Conference on Big Data (Big Data), pages 3109–3118.
IEEE, 2020.

[13] Zhishuai Li, Gang Xiong, Yonglin Tian, Yisheng Lv, Yuanyuan Chen,
Pan Hui, and Xiang Su. A multi-stream feature fusion approach
for traffic prediction. IEEE transactions on intelligent transportation
systems, 23(2):1456–1466, 2020.

[14] Xu Chen, Junshan Wang, and Kunqing Xie. Trafficstream: A streaming
traffic flow forecasting framework based on graph neural networks and
continual learning. arXiv preprint arXiv:2106.06273, 2021.

[15] Toyotaro Suzumura, Shunsuke Nishii, and Masaru Ganse. Towards
large-scale graph stream processing platform. In Proceedings of the
23rd International Conference on World Wide Web, pages 1321–1326,
2014.

[16] Hyunseok Seo, Jinwook Kim, and Min-Soo Kim. Gstream: A graph
streaming processing method for large-scale graphs on gpus. ACM
SIGPLAN Notices, 50(8):253–254, 2015.

[17] Ruijie Miao, Zheng Zhong, Jiarui Guo, Zikun Li, Tong Yang, and Bin
Cui. Burstsketch: Finding bursts in data streams. IEEE Transactions on
Knowledge and Data Engineering, 2022.

[18] Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. Data stream
management: processing high-speed data streams. Springer, 2016.

[19] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[20] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting: Focusing on the elephants, ignoring the mice.
ACM Transactions on Computer Systems (TOCS), 21(3):270–313, 2003.

[21] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and
fast network-wide measurements. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, pages 561–
575, 2018.

[22] Kaicheng Yang, Sheng Long, Qilong Shi, Yuanpeng Li, Zirui Liu, Yuhan
Wu, Tong Yang, and Zhengyi Jia. Sketchint: Empowering int with
towersketch for per-flow per-switch measurement. IEEE Transactions
on Parallel and Distributed Systems, 2023.

[23] Zhuochen Fan, Ruixin Wang, Yalun Cai, Ruwen Zhang, Tong Yang,
Yuhan Wu, Bin Cui, and Steve Uhlig. Onesketch: A generic and accurate

sketch for data streams. IEEE Transactions on Knowledge and Data
Engineering, 2023.

[24] Yikai Zhao, Wenchen Han, Zheng Zhong, Yinda Zhang, Tong Yang, and
Bin Cui. Double-anonymous sketch: Achieving top-k-fairness for finding
global top-k frequent items. Proceedings of the ACM on Management
of Data, 1(1):1–26, 2023.

[25] Yang Zhou, Tong Yang, Jie Jiang, Bin Cui, Minlan Yu, Xiaoming Li,
and Steve Uhlig. Cold filter: A meta-framework for faster and more
accurate stream processing. In Proceedings of the 2018 International
Conference on Management of Data, pages 741–756, 2018.

[26] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang.
Out of many we are one: Measuring item batch with clock-sketch. In
Proceedings of the 2021 International Conference on Management of
Data, pages 261–273, 2021.

[27] Yuhan Wu, Shiqi Jiang, Yifei Xu, Siyuan Dong, Kaicheng Yang, Peiqing
Chen, and Tong Yang. Unbiased real-time traffic sketching. IEEE
Transactions on Network Science and Engineering, pages 1–13, 2023.

[28] Yinda Zhang, Peiqing Chen, and Zaoxing Liu. Octosketch: Enabling
real-time, continuous network monitoring over multiple cores.

[29] Daniel Ting. Data sketches for disaggregated subset sum and frequent
item estimation. In Proceedings of the 2018 International Conference
on Management of Data, pages 1129–1140, 2018.

[30] Yinda Zhang, Zaoxing Liu, Ruixin Wang, Tong Yang, Jizhou Li, Ruijie
Miao, Peng Liu, Ruwen Zhang, and Junchen Jiang. Cocosketch: High-
performance sketch-based measurement over arbitrary partial key query.
In Proceedings of the 2021 ACM SIGCOMM 2021 Conference, pages
207–222, 2021.

[31] Nan Tang, Qing Chen, and Prasenjit Mitra. Graph stream summarization:
From big bang to big crunch. In Proceedings of the 2016 International
Conference on Management of Data, pages 1481–1496, 2016.

[32] Zhiguo Jiang, Hanhua Chen, and Hai Jin. Auxo: A scalable and
efficient graph stream summarization structure. Proceedings of the
VLDB Endowment, 16(6):1386–1398, 2023.

[33] Xiangyang Gou, Lei Zou, Chenxingyu Zhao, and Tong Yang. Graph
stream sketch: Summarizing graph streams with high speed and accu-
racy. IEEE Transactions on Knowledge and Data Engineering, 2022.

[34] Arijit Khan and Charu Aggarwal. Query-friendly compression of graph
streams. In 2016 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages 130–137. IEEE,
2016.

[35] Peixiang Zhao, Charu C Aggarwal, and Min Wang. gsketch: On query
estimation in graph streams. arXiv preprint arXiv:1111.7167, 2011.

[36] Jihoon Ko, Yunbum Kook, and Kijung Shin. Incremental lossless graph
summarization. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 317–327,
2020.

[37] Rui Qiu, Yi Ming, Yisen Hong, Haoyu Li, and Tong Yang. Wind-
bell index: Towards ultra-fast edge query for graph databases. In 2023
IEEE 39th International Conference on Data Engineering (ICDE), pages
2090–2098. IEEE, 2023.

[38] Peter Macko, Virendra J Marathe, Daniel W Margo, and Margo I Seltzer.
Llama: Efficient graph analytics using large multiversioned arrays. In
2015 IEEE 31st International Conference on Data Engineering, pages
363–374. IEEE, 2015.

[39] Per Fuchs, Domagoj Margan, and Jana Giceva. Sortledton: a universal,
transactional graph data structure. Proceedings of the VLDB Endowment,
15(6):1173–1186, 2022.

[40] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E Gonzalez,
and Ion Stoica. {TEGRA}: Efficient {Ad-Hoc} analytics on evolving
graphs. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 337–355, 2021.

[41] Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and
Rajiv Gupta. Commongraph: Graph analytics on evolving data. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2,
pages 133–145, 2023.

[42] Zhuochen Fan, Yalun Cai, Zirui Liu, Jiarui Guo, Xin Fan, Tong Yang,
and Bin Cui. Cuckoograph: A scalable and space-time efficient data
structure for large-scale dynamic graphs. In 2025 IEEE 41st Interna-
tional Conference on Data Engineering (ICDE). IEEE, 2025.

[43] Kai Cheng, Limin Xiang, and Mizuho Iwaihara. Time-decaying bloom
filters for data streams with skewed distributions. In 15th International
Workshop on Research Issues in Data Engineering: Stream Data Mining
and Applications (RIDE-SDMA’05), pages 63–69. IEEE, 2005.

[44] Jiarui Guo, Yisen Hong, Yuhan Wu, Yunfei Liu, Tong Yang, and Bin
Cui. Sketchpolymer: Estimate per-item tail quantile using one sketch.
In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 590–601, 2023.

[45] Haoyu Li, Qizhi Chen, Yixin Zhang, Tong Yang, and Bin Cui. Stingy
sketch: a sketch framework for accurate and fast frequency estimation.
Proceedings of the VLDB Endowment, 15(7):1426–1438, 2022.

[46] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing
Liu. Precise error estimation for sketch-based flow measurement. In
Proceedings of the 21st ACM Internet Measurement Conference, pages
113–121, 2021.

[47] Yuhan Wu, Shiqi Jiang, Siyuan Dong, Zheng Zhong, Jiale Chen, Yutong
Hu, Tong Yang, Steve Uhlig, and Bin Cui. Microscopesketch: Accurate
sliding estimation using adaptive zooming. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 2660–2671, 2023.

[48] Xiangyang Gou, Long He, Yinda Zhang, Ke Wang, Xilai Liu, Tong
Yang, Yi Wang, and Bin Cui. Sliding sketches: A framework using time
zones for data stream processing in sliding windows. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1015–1025, 2020.

[49] Kostas Patroumpas and Timos Sellis. Window specification over data
streams. In International Conference on Extending Database Technol-
ogy, pages 445–464. Springer, 2006.

[50] Wang Bao-Jun and Zhan Ying. A survey and performance evaluation
on sliding window for data stream. In 2011 IEEE 3rd International
Conference on Communication Software and Networks, pages 654–657.
IEEE, 2011.

[51] Yikai Zhao, Yubo Zhang, Pu Yi, Tong Yang, Bin Cui, and Steve Uhlig.
The stair sketch: Bringing more clarity to memorize recent events. In
2022 IEEE 38th International Conference on Data Engineering (ICDE),
pages 164–177. IEEE, 2022.

[52] Corinna Vehlow, Fabian Beck, Patrick Auwärter, and Daniel Weiskopf.
Visualizing the evolution of communities in dynamic graphs. In
Computer graphics forum, volume 34, pages 277–288. Wiley Online

Library, 2015.
[53] Timothy M Chan, Mihai Patraşcu, and Liam Roditty. Dynamic con-

nectivity: Connecting to networks and geometry. SIAM Journal on
Computing, 40(2):333–349, 2011.

[54] Brenden Lake and Joshua Tenenbaum. Discovering structure by learning
sparse graphs. 2010.

[55] Michihiro Kuramochi and George Karypis. Finding frequent patterns in
a large sparse graph. Data mining and knowledge discovery, 11(3):243–
271, 2005.

[56] Andrea Montanari. Finding one community in a sparse graph. Journal
of Statistical Physics, 161:273–299, 2015.

[57] The source code and technical report of HourglassSketch.
https://github.com/HourglassSketch/HourglassSketch-code.

[58] Zhuochen Fan, Jiarui Guo, Xiaodong Li, Tong Yang, Yikai Zhao, Yuhan
Wu, Bin Cui, Yanwei Xu, Steve Uhlig, and Gong Zhang. Finding
simplex items in data streams. In 2023 IEEE 39th International
Conference on Data Engineering (ICDE), pages 1953–1966. IEEE,
2023.

[59] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uhlig,
Shigang Chen, and Xiaoming Li. Heavykeeper: an accurate algorithm for
finding top-k elephant flows. IEEE/ACM Transactions on Networking,
27(5):1845–1858, 2019.

[60] Tong Yang, Junzhi Gong, Haowei Zhang, Lei Zou, Lei Shi, and Xiaom-
ing Li. Heavyguardian: Separate and guard hot items in data streams.
In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2584–2593, 2018.

[61] The CAIDA Anonymized Internet Traces. http://www.caida.org/data/
overview/.

[62] The source code of Bob Hash. http://burtleburtle.net/bob/hash/evahash.
html.

[63] The DBLP Archive. https://dblp.dagstuhl.de/xml/.
[64] The network dataset internet traces. http://snap.stanford.edu/data/.
[65] The Neo4j website. https://neo4j.com/.
[66] Barefoot tofino: World’s fastest p4-programmable ethernet switch asics.

https://barefootnetworks.com/products/brief-tofino/.

https://github.com/HourglassSketch/HourglassSketch-code
http://www.caida.org/data/overview/
http://www.caida.org/data/overview/
http://burtleburtle.net/bob/hash/evahash.html
http://burtleburtle.net/bob/hash/evahash.html
https://dblp.dagstuhl.de/xml/
http://snap.stanford.edu/data/
https://neo4j.com/
https: //barefootnetworks.com/products/brief-tofino/

	Introduction
	Background and Motivation
	Prior Art and Limitations
	Our Proposed Solution

	Background and Related Work
	Problem Definition
	Related Work
	CMSketch and TowerSketch
	CocoSketch
	TCMSketch

	The HourglassSketch Algorithm
	The Basic Version
	From TCMSketch to TowerTCMSketch
	Optimization: Error Funnel
	Our Final Version
	Discussion: Innovative Techniques of HourglassSketch

	Mathematical Analysis
	Analysis of the Basic Version
	Analysis of TowerTCMSketch
	Analysis of the Optimized Version
	Time Complexity

	Experimental Results
	Experimental Setup
	Comparison with Prior Work
	Comparison on Edge Query
	Comparison on Node Query
	Comparison on Throughput

	Experiments on Parameter Settings
	Analysis on HourglassSketch
	Experiments on Neo4j Graph Database

	Conclusion
	References

