REncoder: A Space-Time Efficient Range Filter
with Local Encoder

Ziwei Wang*, Zheng Zhong*, Jiarui Guo*, Yuhan Wu*, Haoyu Li*,
Tong Yang*!, Yaofeng Tu*, Huanchen Zhang$, Bin Cui*
*School of Computer Science, and National Engineering Laboratory for Big Data Analysis Technology
and Application, Peking University, Beijing, China TPeng Cheng Laboratory, Shenzhen, China
1ZTE Corporation, Beijing, China §Tsinghua University, Beijing, China

Abstract—A range filter is a data structure to answer range
membership queries. Range queries are common in modern
applications, and range filters have gained rising attention for
improving the performance of range queries by ruling out empty
range queries. However, state-of-the-art range filters, such as
SuRF and Rosetta, suffer either high false positive rate or
low throughput. In this paper, we propose a novel range filter,
called REncoder. It organizes all prefixes of keys into a segment
tree, and locally encodes the segment tree into a Bloom filter
to accelerate queries. REncoder supports diverse workloads by
adaptively choosing how many levels of the segment tree to store.
We theoretically prove that the error of REncoder is bounded and
derive the asymptotic space complexity under the bounded error.
We conduct extensive experiments on both synthetic datasets
and real datasets. The experimental results show that REncoder
outperforms all state-of-the-art range filters.

I. INTRODUCTION

A. Background and Motivation

Range queries are common operations in modern database
applications [1-5]. A range filter is a data structure to answer
range membership queries [6—8]. Unlike a Bloom filter [9] that
only supports point queries (e.g.is key 87 in the set?), a range
filter determines whether a queried range contains any item
(e.g., is any key ranging from 56 to 7982 in the set?). Range
filters have gained much attention because they can reduce the
number of I/Os by eliminating empty range queries.

Below we introduce three use cases of range filters.
Use Case 1: Log-structured merge (LSM)-tree [10]. LSM-
trees are widely used in DBMS [1, 11-17] and have many
applications such as time-series databases [18, 19] and graph
databases [20, 21], thanks to their excellent writing perfor-
mance. However, because an item can reside in Sorted String
Tables (SSTables) from all levels in the LSM-tree, we have
to access multiple SSTables from disk when retrieving the
item. It wastes expensive disk I/Os when the item does not
exist in the SSTables. For point queries, an LSM-tree typically
maintains a Bloom filter in memory for each SSTable to
check the existence of items before issuing disk I/Os [22, 23].
For range queries, range filters can benefit an LSM-tree in a
similar way. When processing a range query, before accessing
an SSTable, we first query the corresponding range filter to
check whether there are items within the queried range. If the
filter returns true, there is a high probability that the range
contains at least one item (could be a false positive), and we
should load the SSTable from disk to verify and retrieve the

Corresponding author: Tong Yang (yangtongemail @ gmail.com).

desired item(s). Otherwise, we can skip searching the SSTable
because we are 100% sure that the result set is empty for this
range. Empty ranges are common especially for LSM-trees
with many levels/runs. Therefore, range filters are effective
in reducing the number of I/Os and thus improving query
performance.

Use Case 2: B+tree [24]. B+trees are the most widely used
index structures in DBMSs. Typically, a B+tree has a large
fanout and its leaf nodes are not cached in memory. To save
unnecessary leaf node accesses, we can maintain a range filter
in memory for each leaf node so that we visit a particular leaf
node only when the corresponding range filter returns positive.
In this way, empty point and range queries do not incur any
disk I/Os. Range filters can also be applied to optimize many
other B-tree variants[25].

Use Case 3: R-tree [26]. Range filters can also benefit an R-
tree and its variants [27, 28]. An R-tree is a generalization of a
B-tree in multi-dimensional space. Take 2-dimensional R-trees
(i.e., the keys in the R-tree are 2-dimensional) as an example.
We denote the 2-dimensional key using (x,y). A spatial query
such as retrieving the items satisfying 42 < =z < 100 and
58 < y < 111 can be regarded as a 2-dimensional range
query. Similar to a B+tree, for each leaf node of an R-tree,
we include an in-memory range filter to avoid unnecessary
disk I/Os. Since the keys in R-tree are 2-dimensional, we first
transfer them to 1-dimensional by Z-order! [29] and then store
them in the range filers.

Designing an efficient range filter is challenging. There are
three primary goals. First, a range filter must be compact so
that it can fit in memory. Second, it must be accurate (i.e.,
low false positive rate) to save as many unnecessary I/Os as
possible. Finally, it must be fast so as not to significantly
increase the CPU usage of target applications. As the state-
of-the-art solution [8] has approached the theoretical lower
bound in space [30], in this paper, we focus on improving
range filters’ performance while retaining the space-efficiency.

B. Prior Works

There are four current state-of-the-art range filters: SuRF
[7], Rosetta [8], SNARF [31] and Proteus [32]. SuRF is based
on trie, its key idea is to prune the lower levels of the trie and
then succinctly encode the remaining trie. Because of pruning,
however, SuRF does not provide theoretical guarantee on the

IFor a 2-dimensional key, interleave the binary representations of its 2 and y
to obtain the corresponding 1-dimensional key.

false positive rate (FPR), and the FPR increases significantly in
correlated workloads?. Rosetta overcomes the shortcomings of
SuRF by using Bloom filters. It organizes all prefixes of keys
in a segment tree [33, 34] (refers to binary segment tree by
default), and uses a series of Bloom filters to store the segment
tree. However, Rosetta has a relatively low in-memory per-
formance because of many queries to Bloom filters. SNARF
learns a CDF model of the keys, then uses the model to store
information of the data and answer range queries. By using
the learned model, SNARF achieves lower FPR. However, like
SuRF, the FPR of SNAREF increases significantly in correlated
workloads. Proteus combines the trie and the Bloom filter. It
proposes Contextual Prefix FPR (CPFPR) model, by which it
can choose a design (of trie and Bloom filter) that achieves a
low FPR. However, using the CPFPR model requires sampling
the workload before constructing the range filter, which is
impractical for some use cases.

C. Our Proposed Solution

We propose Range Encoder (REncoder), a novel range
filter that improves over the state-of-the-art solutions in the
aforementioned design goals. Based on REncoder, we also
propose REncoderSS and REncoderSE for different use cases.
We define three use cases: A) sampling queries is forbidden,
and the theoretical error bound is not required (REncoderSS);
B) sampling queries is allowed, and the theoretical error bound
is required (REncoderSE); C) sampling queries is forbidden,
but the theoretical error bound is required (REncoder). Accord-
ing to evaluation on both synthetic and real-world datasets:
1) REncoder(SS/SE) is compact, with a size close to the
theoretical lower bound; 2) it is accurate, with an FPR ranking
in the top two for all use cases; 3) it is fast, with a filter
throughput ranking in the top two for all use cases; 4) it has
the best overall throughput for all use cases. The comparison
results are summarized in Table I.

Similar to Rosetta, REncoder organizes all prefixes of keys
in a segment tree and use the segment tree to support range
queries. Each node of the segment tree corresponds to a range,
and the range of the parent node is the union of the ranges
of its child nodes. Note that the ranges of the nodes at the
same level are non-overlapping. The node of the segment tree
records whether there is a key in its range. It means that for
each key, the segment tree records the existence of not only
the key itself but also all of its prefixes (ranges containing
the key). Figure 1 shows an example. Inserting binary key
1101 (13) into a segment tree will record not only 1101
but also 110 ([12,13]), 11 ([12,15]), and 1 ([8,15]). In this
way, we can divide the range query into up to log,(R) point
queries of prefixes, where R is the range size. For example,
querying range [0010, 1111] (]2, 15]) is equivalent to querying
the existence of prefix 001 (]2, 3]), 01 ([4,7]), and 1 ([8, 15]).

Below are the key techniques of REncoder. REncoder stores
the segment tree by using Bloom filter, and uses a compact
encoding algorithm to improve the speed. The key idea of
our encoding method is to leverage the query locality of the

>The queried keys are similar to the stored keys.

01 : Prefix
O : Inserted Node

: Queried Node

,,,,,

e]

Fig. 1: Example of segment tree.

segment tree, so as to reduce the number of memory accesses.
Specifically, we first divide the entire segment tree into many
mini-trees. Then we encode each mini-tree into a bitmap: we
make each node in the mini-tree correspond to a bit in the
bitmap. If the node exists, the corresponding bit will be set
to 1. Otherwise, the corresponding bit will be set to 0. The
encoded bitmap is called Bitmap Tree (BT). After encoding,
we insert each BT into a Bloom filter independently, so that
the information in the same BT, i.e., the nodes in the same
mini-tree, will be encoded into the Bloom filter locally. For
a mini-tree with N nodes, the size of its corresponding BT
is N bits. When N < 512 (the maximum data size that
SIMD instructions can handle [35]), we only need one memory
access to obtain the information of all nodes in the mini-tree.

Due to the diversity of dataset/workload (keys/queries) in
practice, we also propose an optimized REncoder. It can
adaptively choose how many levels of the segment tree to store
to remain efficient in different datasets. Based on the optimized
REncoder, we propose two new versions: one Selects the
Start level (from which level to start storing) according to the
dataset, called REncoderSS; the other Selects the End level
(to which level to end storing) according to the workload,
called REncoderSE. In addition, we prove that REncoder has
a theoretical error bound, and we derive the asymptotic space
complexity under the bounded error. When the keys (64-bit
integers) and queries are uniformly-distributed, given various
bounded error (FPR), the space (bits per key) required by each
version of REncoder is shown in Table II. The source code
of REncoder is available on GitHub [36].

We make the following contributions in this paper.

1) We propose a novel range filter, called REncoder. It
achieves great query performance by taking advantage of the
locality. The core design is locally encoding the segment tree
into the Bloom filter. The encoding scheme is generic, and it
can be applied to various tree structures.

2) We propose an optimized REncoder which can adaptively
adjust the number of stored levels according to the workload.
Based on the optimized REncoder, we propose two new ver-
sions for different use cases: REncoderSS and REncoderSE.

3) We theoretically prove that the error (i.e., false positive
rate) of REncoder is bounded. Given the bounded error ¢, the

TABLE I: Comparison of range filters>.

. Filter Overall Theoretical Need sample
Use Case Range Filter FPR Throughput Throughput error bound query
SuRF 0 4.5 1 No No
A SNARF 3.8 1.3 16.8 No No
ProteusNS 0.7 7.2 0.3 No No
REncoderSS 3.1 5.2 24.3 No No
Rosetta 2.2 1 1.9 Yes Yes
B Proteus 5.1 4.2 23.8 Yes Yes
REncoderSE 3.9 53 24.8 Yes Yes
C REncoder 2.4 4.6 2.5 Yes No

TABLE II: Space cost of REncoder.

. FPR
Version
50% 25% 10% 1% 0.1%
REncoder 6.5 8.5 10.5 16 21
REncoderSS(SE) 2 3 4.5 9.5 14.5

space that REncoder needs is O(N (k + log 1)), where N is
the number of the items, and k is the number of the hash
functions of the Bloom filter.

4) We carry out extensive experiments on synthetic and real
datasets. The results show that when using the same amount
of memory, REncoder outperforms state-of-the-art solutions.

II. PRELIMINARIES AND RELATED WORK

A. Definition

Range filter is a data structure for representing a set S,
Given a query range R = [a,b]: 1) if the range contains any
item in the set (i.e., RN S # (), the range filter must report
true; 2) if the range contains no item in the set (i.e., RNS = 0),
the range filter reports false with probability 1 — €, while € is
false positive rate of the range filter.

B. Range Filters

Most range filters can be divided into two categories: trie-
based solutions [6, 7] and Bloom filter-based solutions [8, 37].
There are some range filters that do not fall into either of the
two categories. We denote them as novel solutions [31, 32].
Trie-based Solutions: Trie-based range filters include Adap-
tive Range Filter (ARF) [6], Succinct Range Filter (SuRF) [7],
etc.. ARF first builds a full trie, then determines which nodes
to truncate by training on sample queries, finally encodes the
truncated trie into a bit sequence. Different from ARF, SuRF
does not need training, the trie is truncated at a certain length.
In addition, SuRF uses a hybrid encoding scheme [38] to
encode the trie. SURF also have some advanced versions which
save various additional information for each key including
hashed key suffixes, real key suffixes and mixed key suffixes.
Bloom filter-based Solutions: Bloom filter-based range
filters include Prefix Bloom filter [37], Robust Space-Time
Optimized Range Filter (Rosetta) [8], efc.. Prefix Bloom filter

3FPR = LN(FPR of current range filter / FPR of SuRF)
Filter Throughput (FT) = FT of current range filter / FT of Rosetta
Overall Throughput (OT) = OT of current range filter / OT of SuRF
FPR and FT take the average of all experiments, and OT takes the average
of experiment on range queries.

inserts predefined-length prefixes of each key into Bloom
filters, and it can only be used for corresponding fixed-prefix
queries. In contrast, Rosetta inserts every prefix of each key
into Bloom filters. For L-bits keys, there are L Bloom filters
in Rosetta. Prefixes of length i of each key are inserted into i*
Bloom filter. In essence, Rosetta builds an “implicit segment
tree” on the Bloom filters.

Novel Solutions: Novel range filters include Sparse Nu-
merical Array-Based Range Filters (SNARF) [31], and Self-
designing Approximate Range Filter (Proteus) [32]. SNARF
learns a CDF model of the keys, and uses the model to
map the keys into a sparse bit array. Then, the sparse bit
array is compressed to save space. To answer a range query,
SNARF uses the learned model to obtain the bit positions
corresponding to the left and right boundaries of the query.
Then SNARF checks whether there is a bit between the two
bit positions in the compressed bit array (i.e., whether there
is a key within the range). The key of Proteus is the CPFPR
model, which formalizes the FPR of prefix-based filters in
various design spaces. Proteus combines the trie-based range
filters and Bloom filter-based range filters. It uses both an FST
(Fast Succinct Trie) [7] and a prefix bloom filter, and uses the
CPFPR model to design (the depth of FST and the prefix
length of prefix bloom filter) to achieve optimal FPR.

C. Variants of Bloom Filters

Bloom filters [9] are widely used in database and network,
thanks to their three advantages: fast, compact and only have
one-sided errors. There are many variants of Bloom Filters for
different uses [39—49]. Among them, the closest to REncoder
are Shifting Bloom filter (ShBF) [44] and Persistent Bloom
Filters (PBF) [45]. ShBF is proposed to improve the perfor-
mance of standard Bloom filter. Its key novelty is encoding
partial information of an item in a location offset. Both ShBF
and REncoder take advantage of the locality to reduce hash
operations. However, ShBF takes advantage of the locality
by locally encoding partial information of the item, while
REncoder takes advantage of the locality by locally encoding
prefixes of the item. In fact, ShBF is orthogonal to REncoder.

PBF is used for temporal membership queries, e.g., has
this item appeared between 6am and 8am? Both PBF and
REncoder use segment trees and Bloom filters, but in a totally
different way. The segment tree of PBF records time ranges,
while that of REncoder records key ranges. PBF uses several
Bloom filters to store the segment tree, while REncoder only

need one Bloom filter. Moreover, REncoder takes advantage
of locality to significantly improve its performance, and can
adaptively choose the stored levels of the segment tree accord-
ing to datasets.

III. RANGE ENCODER

In practice, take LSM-tree as an example, a REncoder is
constructed for each SSTable of a LSM-tree. When executing
a point or range query, before accessing an SSTable, we
first query the corresponding REncoder, and only when the
REncoder returns true, we will load the SSTable from the
disk. Whenever the LSM-tree performs a merge operation, the
REncoder needs to be rebuilt using the new items. Below we
will discuss the construction and the query of REncoder in

detail. The terms used in this paper are shown in Table III.
TABLE III: Terms used in this paper.

Algorithm 1: Insert

Input: key to be inserted
117+ 4,
2 while i < L do
3 keysuffm <

key & 0x0000000F | OxF FFFFFEQ,

4 bt < CodelntoBitmap(keysuy f fiz);
5 RBFE.Insert(key >> 4, bt);
6 key < key >> 4;
7 141+ 4
8

Algorithm 2: RBF.Insert

Term Meaning
L Length of key
D Prefix of key
k Number of hash functions
h; The " hash function
L, Number of stored levels
R Range query size
Rax Maximum range query size
Py The proportion of 1 in the bit array of RBF

A. Constructing REncoder
Similar to Rosetta, REncoder organizes all prefixes of all

keys into a segment tree, and stores the segment tree using
the Bloom filter. However, REncoder uses a novel encoding
scheme to utilize the locality, which can significantly improve
performance. For each key, we first encode all its prefixes into
several BTs. Then we insert the BTs into one special Bloom
filter named Range Bloom Filter (RBF). RBF is similar to
the standard Bloom filter. The difference is that the standard
Bloom filter can only insert one item at a time, i.e., set one bit
to 1 at a time, while RBF can insert a bitmap in one memory
access, so as to set multiple bits to 1 simultaneously. Once all
keys are encoded and inserted into the RBF, the construction
of the REncoder is done. Take the example of encoding 4
consecutive prefixes into one BT. The insertion procedure is
described in Algorithm 1. Thanks to RBF, the construction
efficiency of REncoder is significantly improved compared
with Rosetta. Theoretically, the magnitude of the improvement
is proportional to the number of consecutive prefixes encoded
into one BT.

We now explain the insertion of RBF. The procedure is
presented in Algorithm 2. Similar to the standard Bloom filter,
the insert position is calculated by the hash function (Line 3).
However, RBF takes the insert position as the starting point
and inlays the bitmap using OR operation, instead of only
setting the bit of insert position to 1 (Line 4).

An insertion example: The left part of Figure 2 shows
an insertion example of REncoder. The insertion is divided
into three steps: 1) We split the key 164 (corresponding to
10100100) into prefix 1010 and suffix 0100. Note that the suf-
fix 0100 actually represents the last 4 consecutive prefixes of

Input: ppnesn, bt
11+ 1;
2 while i < k do
3 pos <— hz (phush);
4 *(array + pos) < x(array + pos) | bt;
// array is the start address of the
array of RBF
5 11+ 1;
6 end

key 164 (10100,101001,1010010,10100100). 2) We encode
suffix 0100 into a 32-bit (4-byte) BT. First, we build a virtual
segment tree with a depth of 5, which can record the range
[0000, 1111]. Then we number each node of the segment tree
in breadth-first order. The root node is the 1%¢ node, 0, 01,
010 and 0100 corresponds to 2", 5t* 10" and 20*" node,
respectively. Next we set the corresponding positions in the BT
to 1, and obtain BT 11001000010000000001000000000000.
In this way, we encode the segment tree recording key 0100
into a BT. 3) We hash the prefix 1010 into % indices of RBF,
and inlay the BT using operation OR. In this way, we store
the built virtual segment tree in RBF. Note that we do not
build a real segment tree, but use the structure of the segment
tree to organize keys. The insertion of the next suffix 1010 is
the same. Note that there is no prefix before 1010. Therefore,
the prefix for hash functions can be O or any other constant.
Obviously, after insertion, the number of bits set to 1 in RBF is
the same as that in Bloom filters of Rosetta, which guarantees
that the accuracy of REncoder can match Rosetta.

B. Range Queries with REncoder

The difference between REncoder and Rosetta in range
queries lies in the queries to Bloom filter. In Rosetta, each
query to Bloom filter can check the existence of one prefix. In
REncoder, each query to RBF obtains one BT which can check
the existence of several (e.g., 4) consecutive prefixes. Thanks
to the locality of range queries, i.e., consecutive prefixes are
often accessed in the same range query, REncoder significantly
improves query efficiency.

We now illustrate how a range query is executed in REn-
coder. The procedure of query is divided into two stages:
Decomposition stage and Verification stage. In Decomposition
stage, similar to Rosetta, we decompose the target range

4-bit Prefix [1010],

8-bit Key
< 4-bit Suffix [0100],

[1010 01001,
Step 1: Split the Key into Prefix and Suffix

Node Number

(Virtual)

ﬁ Step 2: Encode the Suffix [0100], into a BitMap

8

|1|| LI

16

\El]

[

4-Byte BitMéb
“RBF = RBF OR BltMap

Hash1[1 01 0}-- I-Tashz[m“}G] Hashk[1 O10]

[}
}
[}
:
I
: Range BIoom Fllter (RBF)
}
[}
[}
[}

Step 3: Hash the Prefix [1010], into Indices of
RBF and Inlay the BitMap (Use Operation OR)

Decomposition stage

|

Sub-Range :

Target Range [1010 0000],~[1010 0011]2:

[1010 0000],~[1010 0101], Sub-Range ‘

[1010 0100),~[1010 0101},

Verification stage
Hash[1010] Hash,[1010] Hash[1010]
1 |] [| I

.‘_VV i ‘::’—’-”'——‘ \\\\ RBF
BitMap = AND (All Hasjhéasimaps)

A2 A 8
Ll C I] - L] ||1|| IDI I@\
4-Byte BitMap
Hash the Prefix [1010], into Indices of RBF and
Extract the BitMap (Use Operation AND)

: Sub-Range [10100000,10100011]
: Sub-Range [10100100,10100101]

\
[
\
\
[
\
\
I
[
\
[
[
[
[
[
\
\
I
(® : Valid Node. |
() : False Positive Node. :
(® : Out-Of-Range Node. |
\

\

I

\

\

\

[

\

\

|

\

[

I

I

\

\

return True

Decode the BitMap and Conduct the Range Query

Fig. 2: Examples of REncoder

(R;) into several non-overlapping sub-ranges, each of which
corresponds to a prefix that can exactly cover all keys in
the range. Specifically, we denote the range corresponding to
the current prefix as R,. We start from the shortest prefix
(the empty prefix), which means R, is [0, maxkey]. We then
compare IR, with R;. There are three cases: 1) if 7, is non-
intersected with R;, we do nothing; 2) if R, is contained in
R, we record R, as a sub-range; 3) if 12, is intersected with
Ry, we append O (and 1) to the current prefix to get the new R,
[0, mazkey/2] (and [maxkey/2+ 1, maxkey]), then compare
the new I, with R,. We repeat the above process until there
is no new Rt,. Take the 4-bit key as an example. For the
target range [0,4], we start from the max R,, [0,15]. [0,15] is
intersected with [0, 4], we compare [0, 7] and [8, 15] with [0, 4].
[8,15] is non-intersected with [0, 4], we do nothing. [0, 7] is
intersected with [0, 4], we compare [0, 3] and [4, 7] with [0, 4].
[0,3] is contained in [0, 4], we record [0, 3] (corresponding
to prefix 00) as a sub-range. Similarly, we can get another
subrange [4, 4] (corresponding to the prefix 0100).

After the decomposition of the target range, we turn to
Verification stage. First, we query RBF for the existence of
the prefix corresponding to the first sub-range. If it returns
negative, we continue to query for the prefix corresponding to
the next sub-range until all prefixes have been queried. If none
of them returns positive, REncoder reports that the target range
is empty. If one of the queries returns positive, we perform a
depth-first traversal of the mini-tree corresponding to the prefix
to further verify the existence of it. The traversal procedure is

as follows: Starting from the root node of the mini-tree, we
query RBF for the existence of the prefix corresponding to the
current node, if it returns positive, continue to traverse down
the tree, otherwise terminate the current path. If the traversal
reaches a leaf node and the query to RBF returns positive,
REncoder reports that the sub-range is not empty, which
also indicates that the target range is not empty. Otherwise,
REncoder reports that the sub-range is empty. Note that only
when all the sub-ranges in Verification stage are empty will
REncoder report that the target range is empty. Still take the
example of encoding 4 consecutive prefixes into one BT, the
procedure of a range query is shown in Algorithm 3.

We now specially discuss the query to RBF, the procedure
is shown in Algorithm 4. We first extract the hash prefix
from the queried prefix by GetHashPrefix function (Line 1).
If the current hash prefix is the same as the hash prefix of the
previous query, it indicates that the target information of the
two queries is in the same BT, so we can directly use the BT
obtained from the previous query (Lines 2-3). Otherwise, we
have to perform hash operations on the current hash prefix to
get the BT that contains information about the queried prefix
(Lines 4-12). We also need to store the current hash prefix and
BT for the next query (Lines 13-14). Finally, we extract the
bit that indicates the existence of the queried prefix from BT
by GetBitFromBitmap function and return it (Line 16).

A range query example: The right part of Figure 2
shows a range query example of REncoder. Suppose the target
range is [160, 165] (corresponding to [10100000, 10100101]),

Algorithm 3: Range Query

Algorithm 4: RBF.Query

Input: low, high

// [low, high] is the target range

plist < Decompose(low, high);

// plist is a list of the prefixes
corresponding to sub-ranges

—

2 for each p € plist do

3 [< length of p;

4 if Verify(p,l) then

5 | return true;

6 end

7 end

8 return false;

9 Function Verify (p,):

10 if |RBF.Query(p,l) then
1 | return false;

12 end

13 if | == L then

14 | return true;

15 end

16 if Verify(p,l+1) then

17 | return true;

18 end

19 return Verify(p + 25711 1 4 1);
20 end

and key 164 and some other keys (not included in the
target range) have been inserted. We first decompose the
target range into two sub-ranges [10100000,10100011] and
[10100100,10100101]. Then it turns to Verification stage. For
the sub-range [10100000,10100011] (corresponding to prefix
101000), we extract the hash prefix 1010 by which we can
obtain the BT 11111010010000100001000000000010 from
RBF. As discussed in the insert example, each bit in the
BT corresponds to a node in the segment tree. Therefore,
we can decode the BT to a segment tree. We find that the
bit corresponding to the 4*" node (prefix 101000) of the
segment tree in the BT is 1, so the traversal of the mini-tree
corresponding to 4*" node begins: We first check the prefix
1010000, i.e., traverse to 8t" node. Since the hash prefix of
prefix 1010000 is still 1010, there is no need to query RBF
again, we can directly use the BT (segment tree) obtained from
the previous query. It turns out that the bit corresponding to
the 8t" node in the BT is 0, so the current path is terminated;
Then we check the prefix 1010001, i.e., traverse to 9th node.
We can still use the BT obtained from the previous query
because of the same hash prefix, and the bit corresponding to
the 9t node is 0 too. It indicates that the current sub-range
is empty, while the 4*" node is a false positive node which is
coincidentally set to 1 by other BTs. Thus, we turn to verify
the next sub-range [10100100,10100101] (corresponding to
prefix 1010010). Since the hash prefix of this sub-range has not
changed, the previously obtained BT is still available. We first
query prefix 1010010 (10" node), its corresponding bit in BT
is 1, so we continue to check the prefix 10100100, i.e., traverse

Input: pgyery, !

1 Phash < GetHashPrefix(pguery,);

2 if Dhash = Deache then

// Peache 1s the hash prefix
previous query

3 VU < Ucaches

// Veache 15 the BT obtained
previous query

of the

from the

4 else
5 | pos < hi(Phash);

6 v < *(array + pos);
7 14 2;

8 while 7 < k do

9 pos < hz (phash);

10 v+ v & *x(array + pos);
1 11+ 1;

12 end

13 Pcache < Phashs

14 Ucache < U;

15 end

16 return GetBitFromBitmap(v, pguery,!);

to 20" node, the corresponding bit is also 1. Because the 20"
node is a leaf node, the verification returns true, which reports
that the current sub-range, as well as the target range are not
empty. Note that in this example, REncoder only queries RBF
once, while Rosetta needs to query Bloom filter 5 times, so
the performance of REncoder should be almost 5 times that
of Rosetta.

C. FPR Optimization Through Choice of Stored Levels

A natural question arises: how many levels of the segment
tree should we store in RBF? i.e., how many prefixes should
be stored for each key? For keys with a size of 64 bits, if
we store all 64 prefixes of them, the required space will be
unacceptable. Therefore, we have to make a trade-off and only
store partial prefixes for each key.

In Verification stage, the queries for prefixes start from the
prefix that can exactly cover all keys in the sub-range, which
means the prefixes before will not be queried. It is obvious
that when the maximum range query size iS R,,44, only the
last loga Rynae + 1 prefixes need to be stored. Considering
that analytical systems (e.g., column store [50]) serve range
queries of R > 64, while filters are more suitable for range
queries of R < 64 [8], the maximum number of prefixes that
need to be stored is log264 + 1, i.e., 7. However, during the
experiments, we found that when the memory is given: in
some datasets, only storing the last logo R4, + 1 prefixes
still takes up excessive space, resulting in high FPR; in other
datasets, the last logs Ryq. + 1 prefixes only occupy little
space. In this case, We can store more prefixes and perform
additional queries for them to further reduce FPR, e.g., for
range [10100000,10100011], before querying prefix 101000,
query prefix 1, 10, 101, 1010, 10100 in turn. Therefore, how to
adaptively choose the number of stored levels L for different
datasets is the key to optimizing FPR.

Although RBF is not exactly the same as the standard
Bloom filter, they share some characteristics, such as when
the proportion of 1 in the bit array of the Bloom filter (P;)
is close to 0.5, the FPR is almost the lowest [9]. As the
length of the bit array and the number of hash functions are
determined, P; is only related to the number of inserted keys
(n;). Given a dataset containing n distinct keys, n; of the
standard Bloom filter is n regardless of the key distribution
(Standard Bloom filter only inserts the key itself). REncoder
also inserts several prefixes of the key, thus n; of it is related
to the key distribution and the number of prefixes to be
inserted for each key (i.e., the number of stored levels, Lj).
For example, given two different datasets A{000,001,010},
B{000,010,100}. We denote n; of REncoder for A and
B as A, and B, respectively. When L is 1, A, is 3
({000,001,010}), B, is 3 ({000,010,100}). When L; is 2, A,
is 5 ({000,001,010,00,01}), B,, is 6 ({000,010,100,00,01,10}).
When L is 3, A, is 6 ({000,001,010,00,01,0}), B, is 8
({000,010,100,00,01,10,0,1}). Suppose when n; is 6, P; is
close to 0.5 (FPR is the lowest). In order to achieve optimal
FPR, REncoder needs to store 3 levels for dataset A, and 2
levels for dataset B. In practice, it is time-consuming to calcu-
late n; and corresponding P; under various L,. Therefore, we
can gradually increase Ly during insertion until n; is close to
optimal (P is close to 0.5). Specifically, we insert the prefixes
of the keys by round. In each round, we only insert the last n,.
prefixes of each key. The insertion ends at the round where P;
is close to 0.5. Note that n, (the number of prefixes inserted
for each key in each round) can be set according to different
needs: set large for better insertion performance, set small for
better query performance.

Here comes another question: should storing always start
from the lowest level? The answer is no. Still take the dataset
B{000,010,100} as an example. There is no need to store
the lowest level ({000,010,100}), as the penultimate level
({00,01,10}) is enough to distinguish all keys. It means that
we can start from a higher level to store more significant
information. Therefore, we propose REncoderSS. Before in-
serting keys, REncoderSS counts the maximum length of
the longest common prefix (LCP) between any key-key pair
(denoted as lpjicp). Instead of the lowest level (i.e., Lth
level), REncoderSS starts storing from the ({xxicp + 1)t level,
which is enough to distinguish all keys. Normally, the FPR of
REncoderSS is lower than REncoder. But in correlated work-
loads, the FPR of REncoder increase significantly like SuRF
because of the absence of the lower levels. To compensate for
this shortcoming of REncoderSS, we propose REncoderSE.
REncoderSE needs to sample some queries before inserting.
After sampling, REncoderSE counts not only [z, but also
the maximum length of the LCP between any key-query
pair* (denoted as ljqicp). Levels below the (Ixqicp)t" level are
necessary because only they can distinguish between certain
stored keys and queries. Therefore, when lrgicp < lpkicps

“Define lep(x,y) as the length of LCP between z and y. The length of LCP
between key and query[left,right] is max (lcp(key,left), lep(key,right))

REncoderSE starts storing from the (Ixxicp + 1)th level like
REncoderSS (necessary levels (Iiqicp, lkkicp + 11 are stored).
When liqicp > lkkicp, REncoderSE starts storing from the
(lkgicp + 1)*" level, but in the opposite direction. In this
case, the ({xqicp + 1)*" level is regarded as the end level. By
storing the necessary levels (levels below the (lkqlcp)th level),
REncoderSE remains low FPR in correlated workloads.

D. Support for Float/Double Types.

In this section, we propose Two-Stage REncoder to support
float/double types. For convenience, we only discuss the float
type (the solution is similar for the double type). We only
discuss positive keys, as negative keys can be converted to
positive keys by adding the absolute value of the smallest key.

Float key consists of a sign bit, an 8-bit exponent, and a 23-
bit mantissa. As discussed before, we ignore the sign bit, then
the float key can be regarded as a 31-bit integer key. We design
a Two-Stage REncoder to store the integer key. In Stage 1, we
store the exponent. Storing starts from the 8 level and goes
up (the higher the level, the larger the range). Storing ends
when P; reaches a predetermined threshold (T¢,, < 0.5). In
Stage 2, we store the mantissa. Storing starts from the 9" level
and goes down (the lower the level, the higher the precision).
Storing ends when P; is close to 0.5. The query of Two-
Stage REncoder is the same as REncoder. We can set T¢.)p
according to dataset/workload to achieve better performance,
which is left for future work.

IV. MATHEMATICAL ANALYSIS

In this section, we analyze the detail of the implementation
of the algorithm and provide an error bound. Let [a, b] be the
range in Verification stage and L, = log(b — a + 1) be the
number of query levels. For convenience, we assume that:

1) The range in Verification stage consists of a complete

binary tree, i.e. there exists some s > 0 satisfying b—a =
25 — 1,2%a.

2) The number of query levels shall be no more than the
number of stored levels, i.e. Ly < L.

3) We always assume that the first L — L bits of the key
exists in the Bloom filter, so we just find a match for the
last L, bits.

4) When P; is not too small, whether every bit in the Bloom
filter will be set to 1 is independent.

TABLE IV: Test of Independence in Bloom Filter

| P P P Pl Piu Puo P

0] 0.5233 0.5250 0.5214 0.5367 0.5264 0.5121 0.5160

1| 04767 04750 0.4786 0.4633 0.4736 0.4879 0.4840
Based on the assumptions above, false positive occurs if and
only if all nodes from the root to the mini-tree are set to 1
and there exists a path to one of its leaves.
A. Overall Error Bound for REncoder
Lemma 1. Ler {a,} be a sequence with a; = 1, ap41 =
2pa,, — p?a?, where 0 < p < 1 is a constant. Then:

1) If0<p< % then a,, converges exponentially to 0.
2) If p=1, then a, = O(3).
3) IfL <p<1 then lim a, = 21;;1.

n—oo

Theorem 2. Let p = Py. If there is no item in range |a,b),
then the probability that our algorithm reports false positive
is bounded.

Ly

P(la, b] reported false positive) < (PlLs_ car,)®, (D

where k is the number of hash functions.

Proof. If our algorithm reports false positive, then the query
shall first enter the mini-tree, then find a path to one of its leaf.
Since the number of queried levels is L, and the number of
stored levels is L, the query enters the mini-tree after L, — L,
steps, and this attempt succeeds if and only if all nodes here
are set to 1. After entering the mini-tree, it shall find a path to
one of its leaves. If we define a,, as the probability of finding
a path when the height of mini-tree is n and [, r be the bit of
the left and right son of the root, by induction we know that

ani1 =P +7=1a, +P(l+7r=2)[1—(1—a,)?
=2P (1 - P)-an, + P} - (2a, —a2)

=2P, - a, — P?d>.

2)

Hence a,, satisfies the equation in Lemma 1. Finally, we know
that for one hash function h;, the following inequality holds:

Lo—Lyg

P([a,b] reported false positive by h;) < P; ar.. (3)

q

Assume that whether every hash function reports false positive
is independent, we get

Lo—Lg

P([a, b] reported false positive) < (P; cap,)®. @)

O
B. Trade-off for Hash Functions and Stored Levels
However, we need to make some trade-offs in the algorithm.

When there are too many hash functions, the P; will exceed
0.5, which can lead to the sharp increase of FPR. Also, while
the increase of stored levels can decrease the number in the
right hand side of Equation 1, it can increase P; as well. In
this part, we analyze the relationships between number of hash
functions, number of stored levels and P;. We assume that we
will adjust the memory to keep P; stable.

Lemma 3. Let M denote the memory of Bloom filter and N
denote the number of items inserted into the Bloom filter;, then

kLsN
P < .

<= 5)
Proof. Each insert operation will set at most L bits to 1 for
every hash function. There are k& hash functions and N items
to be inserted, so

kL N
P< 0

(6)
O

The lemma above shows that P; is approximately a linear
function with respect to k and Ls. As a result, to keep P;
constant without extra memory, we shall keep k - L, nearly
constant.

Theorem 4. When both Py and kL are kept constant, the
right hand side of Equation I is a monotonous increasing

function with respect to k. As a result, the number of hash
functions shall not be set too large.

Proof. We can figure out that

k
Le—Lyg kL, arL,
(P 'an)k:Pl <PL‘1>

1

(7

(02—

We can prove that lim +o00. Hence the value above

. . n—oo Pl” . .
increases when k increase. Moreover, if we want to keep it
small, k shall not be set too large.]

The inferiority of more hash functions compared to more
stored levels can be explained by the fact that every more
hash function results in one more copy of every prefix, but
one more stored levels will only add one bit into the Bloom
filter for each item.

Theorem 5. Assume that Py is kept constant. For a given
range |a,b], to ensure that FPR is less than €, our algorithm
needs O(N (k +log 1)) memory.

Proof. We require

P([a, b] reported false positive) < (PlLS_L“ car,)" <e

log o= gl (8
Ly > Ly - %
log & k‘log?1
Hence,
1
LN kN log 7-— Nlog !
M ~ k s _ L Lq _ iq 4 Ogsl
Pl P1 log ?1 P1 IOg ?1 (9)
1
= O(N(k + log g))
O

Since we always use a limited number of hash functions,
the asymptotic space complexity in Theorem 5 can be written
as O(N log 1), which perfectly demonstrates the overall better
performance.

C. Analysis for More Complex Situation

In the proof above, we assume that every node from the root
to leaf is set to O as to query range. However, this assumption
can be problematic when some items inserted into RBF are
close to the range in the query. These items share the same
prefix with some items in the range and can set some nodes
to 1 in advance. We define a distance as following:

(10

d([a,b]) = minb {k:z>>k=y>>k}

a<lz<

>0,

yEkeys

Clearly d([a,b]) = 0 when [a,b] N keys # &. Also, if false
positive never occurs, the last d([a, b]) nodes in the tree shall
all be set to 0. So the distance measures the difficulty of false
positive as the number of wrongly-set 1 in the tree shall be
d([a,b]) when reporting false positive.

Theorem 6. [f d([a,b]) > 0, the right hand side of Equation
I has a lower bound.

P([a, b]reported false positive) <

f((a.0) (Lg > d([a, b]))

(P~ 0y,)" (2, < d(fa,b])

(1)

Proof. By the definition of d we know that Jy € keys which
shares the same L;—d([a, b]) bits with the range [a, b]. Hence,
false positive occurs when the last d([a, b]) bits in the mini-tree
are set to 1. If d([a, b]) < L, the probability is just ag([mb]). If
d([a,b]) > Lg, the probability can be figured out by replacing
L with d([a,b]). Finally, we get
P([a, b]reported false positive) <
GS([aﬂb]) (Lq > d([a,b]))

(P)" (2 < o))

(12)

O

The theorem above shows that despite the superiority of

more stored levels compared to more hash functions, simply

increasing stored levels is not an effective approach to lower

error rate because finally L, will be greater than d([a,d]) in

this case. As a result, more hash functions still play a role in
our algorithm.

V. EXPERIMENTAL RESULTS

In this section, we illustrate the experimental results of
REncoder. We compare three versions of REncoder with state-
of-the-art range filters: SuRF, Rosetta, SNARF and Proteus.
All the experiments are conducted based on LSM-tree.

We run the experiments on a server with 18-core CPU
(36 threads, Intel CPU i9-10980XE @3.00 GHz), which have
128GB memory. The operating system is Ubuntu version 18.04
LTS. All the algorithms are implemented in C++ and built by
g++ 9.3.0 and -O2 option. The hash functions we use are 32-
bit Bob Hash [51] with random initial seeds. We use SIMD
[35] to accelerate the process of inserting/extracting a bitmap
into/from RBF.

A. Datasets and Workload

Synthetic Dataset: Synthetic dataset contains S0M 64-bit
integer keys which are generated from uniform distribution.
SOSD Dataset: SOSD [52] is a benchmark for Learned
Indexes. It contains four real datasets: amzn is the book sale
data of amazon.com, face is user ID data of Facebook, osmc
is uniformly sampled data of OpenStreetMap, wiki is edit
timestamps of Wikipedia article. All of these datasets contain
200M 64-bit integer keys. We uniformly sample 10M keys
from each of them for experiments. Ordered by skewness,
there is wiki > face > amzn > osmc.

Workload: We generate four types of queries: range queries
of range 2 ~ 32 and 2 ~ 64, correlated range queries and
point queries. The number of each type of queries is 10M. For
2 ~ 32 range queries, we first generate 10M integer keys from
uniform distribution as left boundaries of the range queries.

Then we randomly select an integer from 2 to 32 as the range
size for each query. 2 ~ 64 range queries and point queries
are the same as 2 ~ 32 range queries, except that the range
sizes of 2 ~ 64 range queries are randomly selected from
2 to 64, and the range sizes of point queries are set to 1.
For correlated range queries, we first randomly select 10M
keys from datasets, then we increment the keys by 32 and set
them as left boundaries of the range queries. In this way, all
queried ranges are very similar to stored keys. The range sizes
of correlated range queries are randomly selected from 2 to
32. For each real dataset, we generate 1M real range queries.
We randomly select 1M keys from the remaining 190M keys
in the dataset, and set them as left boundaries of the range
queries. The range sizes of real range queries are randomly
selected from 2 to 32. Since a range filter is best evaluated by
empty queries, all five types of queries above are set to empty.

B. Metrics

False Positive Rate (FPR): FPR measures the accuracy of
range filters. In general, FPR means the ratio of the negatives
that are incorrectly reported as positives to all negatives, it is
defined as:

FP

“FP+TN

where F'P is the number of negatives that are incorrectly
reported as positives, TN is the number of negatives that
are correctly reported as negatives. For range filters, positive
means the queried range contains stored item, while negative
means the queried range does not contain stored item.

Filter Throughput: Filter throughput measures the probing
speed of range filters. Its unit is million operations per second.
(Mops/s).

Overall Throughput: Overall throughput measures the prob-
ing speed of queries using range filters. In experiments, we
build a simulation environment with two-level storage. The
range filters are stored in the first level, while the items (Key-
Value pairs) are stored in the second level. When a query
coming, we first query the range filters in the first level, only
when the range filters return positive, we access second level
for the items. Overall throughput measures the speed of the
entire process. Its unit is the same as filter throughput.

FPR 13)

C. Experiments Settings

In experiments, we implement optimized version of REn-
coder, REncoderSS and REncoderSE. In addition, we use
SIMD to accelerate the process of inserting/extracting a bitmap
into/from RBF. Specifically, we encode 8 successive prefixes
into one bitmap of length 512. We can store/fetch the bitmap
with a single memory access, thanks to AVX-512 of SIMD
instruction sets. For SuRF, we use its mixed version, namely
SuRF-Mixed. SuRF-Mixed stores both hashed key suffixes and
real key suffixed. We allocate the same bits for two suffix
types. For Rosetta and SNARF, we use its default setting. For
Proteus, we use two versions: 1) sampling queries is allowed,
and the design is determined by the CPFPR model, denoted
as Proteus; 2) sampling queries is forbidden, and the default
design (a prefix Bloom filter with a prefix length of 32) is

—e— Bloom filter (Default) —— REncoder —*— REncoderSS(SE)

Z 10

230 2
o TE0) T
E 204 SE
= 2 101
= 10+ SE 10
'5‘ B 3 10 1 ‘\'\‘-\'\'
m T T T T T g 100 T T T T T

20 40 60 80 100 - 18 20 22 24 26

Number of Keys (*1e6) Bits per Key
(a) Cost (b) Gain

Fig. 3: Cost and gain of using REncoder in LSM-tree.
used, denoted as ProteusNS (Proteus with No Sampling).
The memory allocated for each range filter is represented
by bits per key (BPK). When dataset contains 50M keys
and BPK=16, the memory allocated for each range filter is
16 x 50 x 10 = 8 x 10%b ~ 95.37MB. Due to the space
limitation, we do not present specific statistics of range filters
in following text, but summarize them in Table L.

D. Experiments on Cost and Gain

In this section, we compare REncoder with LSM-tree’s
default filter (Bloom filter) in the simulation environment we
built to show the cost and gain of using REncoder in LSM-tree.
We use synthetic dataset and 2 ~ 32 range queries. Note that
Bloom filter handles range queries by sequentially checking
the existence of all keys within the range. The experimental
results show that the cost of using REncoder is slightly slower
build, while the gain is much faster query.

Build Time (Figure 3(a)). The build time of REncoder is only
slightly slower than Bloom filter no matter how the number
of keys changes. The build time of both REncoder and Bloom
filter increases linearly with the number of keys. For each key,
Bloom filter only inserts the key itself, while REncoder inserts
several prefixes of the key, which should make the build of
REncoder much slower than Bloom filter. However, REncoder
can insert multiple prefixes simultaneously by using bitmap
and RBF, which significantly accelerates its build to achieve
an efficiency comparable to the Bloom filter (82% of Bloom
filter). The cost in build time is negligible compared to the
gain in query performance, which is discussed below.
Workload Execution Time (Figure 3(b)). The workload exe-
cution time of REncoder is much faster than Bloom filter, which
is more significant when the BPK is small. REncoder’s work-
load execution time is nearly one order of magnitude faster
than Bloom filter across all BPKs (15x faster on average). The
reasons are as follows: 1) Bloom filter needs to sequentially
check the existence of all keys within the range, which leads
to many memory accesses and hash operations. In contrast,
REncoder only needs much fewer memory accesses (normally
once), thanks to the use of segment tree and the locality of the
queries to Bloom filters. It means that REncoder have much
better filter throughput than Bloom filter; 2) Compared with
Bloom filter, REncoder has lower FPR, leading to fewer 1/Os
which plays a large role in workload execution time.
Overall Time (Figure 4). Despite the slower build, the overall
time of REncoder is still much faster than Bloom filter (11x

faster on average). REn-
coderSS(SE) is even better
(34x faster on average). The
build time only accounts for
a small part of the over-
all time (1.6% and 24%
for Bloom filter and REn-
coder on average). More-
over, the degradation in build
(82%) is negligible com-
pared to the improvement in
workload execution (15x). In
other words, the overhead of building range filters can be
overshadowed by the improvement of query performance.

Overall Time (s)
(=)

[=]
>

18 20 22 24 26
Bits per Key

Fig. 4: Overall time of Bloom
filter and REncoder.

E. Experiments on Range Queries

In this section, we compare the performance of range filters
in 2 ~ 32 range queries and 2 ~ 64 range queries using
synthetic dataset.

FPR (Figure 5). The FPR of REncoder(SS/SE) is the lowest
or comparable to the lowest among all range filters no matter
how the BPK changes.

Filter Throughput (Figure 6(a)-(b)). The filter throughput
of REncoder(SS/SE) is much better than that of Rosetta and
comparable to that of SuRF no matter how the BPK changes.
Overall Throughput (Figure 6(c)-(d)). The overall through-
put of REncoder(SS/SE) is higher than SuRF and Rosetta no
matter how the BPK changes.

Analysis. SuRF truncates part of nodes in the lower levels
to save space, which may result in the loss of important
information for range queries. While Rosetta and REncoder
reserve these information through Bloom filters, and use
additional queries to further guarantee the accuracy of the
information. Therefore, Rosetta and REncoder achieve much
lower FPR than SuRF. For filter throughput, SuRF performs
much better than Rosetta because it uses a truncated trie
internally. When the range query coming, SuRF only needs
to traverse in the succinct trie which is very fast, while
Rosetta needs to perform many time-consuming queries to
Bloom filters. In contrast, REncoder utilizes the locality of
the queries to Bloom filters to achieve higher filter throughput
than Rosetta while remaining low FPR. Overall throughput
indicates the performance of range filters in practice. Since
the speed of computations in first-level storage (e.g., memory)
are much faster than that of data fetching in second-level
storage (e.g., disk), although SuRF has higher filter throughput,
it suffers in overall throughput because of more unnecessary
data fetching in second-level storage caused by its higher
FPR. In contrast, Rosetta and REncoder have higher overall
throughput, thanks to their lower FPR. On the other hand,
computations in first-level storage still take a non-negligible
part in overall throughput. Therefore, REncoder has higher
overall throughput than Rosetta because of its better perfor-
mance in first-level storage. SNARF achieves low FPR by
using a learned model, but the queries to compressed bit array
severely limit the filter throughput. Proteus has both low FPR

—=— SuRF —e— Rosetta ProteusNS —— Proteus

—— SNARF —— REncoder —*— REncoderSS(SE)

i\\ze,g.é.ﬁ -

14 16 18 20 22 24 26 14 16 18 20 22 24 26
Bits per Key Bits per Key
(a) 2~32 range queries (b) 2~64 range queries
Fig. 5: FPR of range queries.

L1
LA
L1

O—=NWhAUOO
1

False Positive Rate(*1E-2)

>

—=— SuRF —e— Rosetta ProteusNS —— Proteus
—— SNARF —— REncoder —¥— REncoderSS(SE)

s 6

=

E 51 54

$41, 41

=31 — o eee o e, v 8 e R S

1 e |5] = — —a—

- 2 2 =

é’ 1

=0

1
t—t—t—¢—¢—¢—¢ —t ¢ ¢ ¢ ¢ ¢
T T T T T T T 0
14 16 18 20 22 24 26
Bits per Key

14 16 18 20 22 24 26
Bits per Key

i 3 (a) 2~32 range queries 3 (b) 2~64 range queries

=)

2 2 2 s

1

=

B 1

= :

E 0- T : >I T T 0- I‘ T >I T T

o 18 20 22 24 26 18 20 22 24 26
Bits per Key Bits per Key

(¢) 2~32 range queries
Fig. 6: Throughput of range queries.

(d) 2~64 range queries

and high filter throughput, because the CPFPR model gives
the optimal design by sampling queries. However, when sam-
pling queries is forbidden, Proteus using default design (i.e.,
ProteusNS) has much worse FPR than REncoder. Since both
keys and queries are uniformly distributed, REncoderSS can
achieve the same performance as REncoderSE, and we denote
them as REncoderSS(SE). Compared with REncoder, REn-
coderSS(SE) stores higher levels that contain more significant
information, leading to lower FPR and higher filter throughput.
REncoderSS(SE) has the highest overall throughput among all
range filters across all BPKs (except 22).

FE. Experiments on Point Queries

In this section, we compare the performance of range
filters in point queries using synthetic dataset. For the sake
of fairness, we make Rosetta allocate memory according to
2 ~ 64 range queries instead of point queries. In this way,
Rosetta maintains the performance for range queries.

FPR (Figure 7(a)). REncoder(SS/SE) remains low FPR in
point queries for all BPK settings.

Filter Throughput (Figure 7(b)). REncoder(SS/SE) has
slightly lower filter throughput than Rosetta.

Analysis. The FPR of SuRF, Rosetta and REncoder in point
queries significantly decreases compared with range queries.
For SuRF, its hashed key suffix provides additional reliable

—eo— Rosetta ProteusNS —— Proteus

REncoderPO —— REncoder(SS/SE)

—=— SuRF
—— SNARF

14

14 16 18 20 22 24 26 14 16 18 20 22 24 26
Bits per Key Bits per Key

(a) FPR (b) Filter Throughput
Fig. 7: Performance of point queries.
information for point queries which can help reduce FPR.
For Rosetta and REncoder, they need fewer queries to Bloom
filters in point queries than in range queries, thus their FPR
which is the combination of the FPR of queries to Bloom
filters is lower. REncoder still have much lower FPR than
SuRF because of the accuracy provided by Bloom filters.
However, Rosetta’s FPR becomes higher than SuRF because
it only queries the lowest level of Bloom filter and ignores
the information stored in other Bloom filters. On the other
hand, the filter throughput of SuRF, Rosetta and REncoder in
point queries increase compared with range queries. For SuRF,
compared with range queries, point queries perform much
simpler traversal of its inner tries which greatly shortens the
latency of queries. For Rosetta and REncoder, fewer queries to
Bloom filters reduces computations for hash and raises overall
performance. SNARF and Proteus perform similarly in point
queries as they do in range queries because their structures are
robust to different range sizes. REncoderSS and REncoderSE
have the same performance as REncoder because higher levels
and lower levels are equally important in point queries.
Optimization. Since Rosetta
only queries the lowest level P

of Bloom filter, it has higher ‘5_ 4| Raietsbise)

False Positive Rate(*1E-3)

filter throughput than REn- - ;|
coder. Inspired by Rosetta, § 24
we propose an optimized ver- £ | |

sion of REncoder for PQint
queries, called REncoderPO.
REncoderPO only queries the
longest prefix of the key (i.e.,
the key itself) for higher fil-
ter throughput at the cost of
worse FPR. The overall throughput of Rosetta, REncoder and
REncoderPO is shown in Figure 8. When BPK < 26, all
filters have relatively high FPRs, thus the overall throughput
is dominated by queries in second-level storage. REncoder
has the highest overall throughput because of its lowest FPR.
When BPK > 26, the FPRs of all filters are negligible, thus
the overall throughput is dominated by queries in first-level
storage (i.e., filter throughput). REncoderPO has the highest
overall throughput because of its highest filter throughput.

18 20 22 24 26 28 30
Bits per Key

Fig. 8: Overall throughput of
point queries.

G. Experiments on Correlated Queries

In this section, we compare the performance of range filters
in correlated queries using synthetic dataset.

& —=— SuRF —e— Rosetta ProteusNS —— Proteus
@' —— SNARF —— REncoder —¥— REncoderSS(SE)
% 8]] ¢
71 100 40 8 B e S —
S 6 80+ 30+ 1
e 60 20- 6]
2 31 E ; 40+ 4
.g %: o 204 104 ;; %:
& 04 == 0 :32¢:=I=H—c 0 04 M
2 14 16 18 20 22 24 26 14 16 18 20 22 24 26 14 16 18 20 22 24 26 14 16 18 20 22 24 26
s Bits per Key Bits per Key Bits per Key Bits per Key
(a) amzn (b) face (c) osme (d) wiki
L g: 31 4 l'<"»*"—"—“"\"'\v 31 e S |
= 4 _ et — Pl
=5 3
204+ ——p— (2]
1 21
£3]1 m
=24 14 1 1
=14 ¢t —t—¢—¢—¢ . —o—8—3 9 oo,
0 T O T T T T T T T
14 16 18 20 22 24 26 14 16 18 20 22 24 26 14 16 18 20 22 24 26 14 16 18 20 22 24 26
Bits per Key Bits per Key Bits per Key Bits per Key
(e) amzn (f) face (g) osmce (h) wiki
Fig. 10: Performance of range queries of real datasets.
—=— SURF —e— Rosctta —— SNARF ProteusNS between similar keys and queries either. Proteus remains low

—— Proteus —— REncoder —*— REncoderSE —e— REncoderSS

107 —+—+—+—+—+—» = 3
— 33— —a—3—%
81 g‘ o ¢ o o ¢+
6 -5132‘ ;;L.\—P.ﬁ—I
44 H .
2 E 1 O—O—Q—Q—xg\—y—<
e o o o >0
04 = = >

14 16 18 20 22 24 26 14 16 18 20 22 24 26
Bits per Key Bits per Key
(a) FPR (b) Filter Throughput

Fig. 9: Performance of correlated queries.

False Positive Rate(*1E-1)

FPR (Figure 9(a)). REncoder(SE) remains low FPR in cor-
related queries for all BPK settings.

Filter Throughput (Figure 9(b)). REncoder(SE) remains
higher filter throughput than Rosetta in correlated queries for
all BPK settings.

Analysis. The FPR of SuRF reaches outrageous 1 even when
BPK is 26. The reason is that SuRF truncates part of nodes in
the lower levels, while the truncated nodes contain important
information for distinguishing the queried key from the similar
stored key. For Rosetta and REncoder, they are hardly affected
by the distribution of the queries. The reason is that they both
use Bloom filters to store the keys. Even if two keys are highly
similar to each other, they are totally different after hash by
Bloom filters. On the other hand, the filter throughput of SuRF
decreases a little. When a correlated query coming, SuRF
usually needs to traverse to the bottom level of the trie which
is time consuming. Similar to FPR, the filter throughput of
Rosetta and REncoder is also not affected. Note that REncoder
still outperforms Rosetta. In addition to SuRF, the FPRs of
SNAREF, ProteusNS and REncoderSS also reach 1. The learned
model of SNARF cannot distinguish between highly similar
keys and queries. As for ProteusNS and REncoderSS, although
both of them use Bloom filters, they do not store the lower
levels of the segment tree. Therefore, they cannot distinguish

FPR, thanks to the appropriate design for correlated workload
given by the CPFPR model. With the increase of BPK, the
number of hash functions used by Proteus increases, leading
to the decrease of its filter throughput. REncoderSE achieves
the same performance as REncoder by selecting the end level
(i.e., storing the lower levels).

H. Experiments on Range Queries of Real Datasets

In this section, we compare the performance of range filters
in range queries of real datasets.
FPR (Figure 10(a)-(d)). REncoder(SS/SE) has the lowest or
near-lowest FPR among all range filters in all datasets.
Filter Throughput (Figure 10(e)-(f)). REncoder(SS/SE) has
higher filter throughput than Rosetta in all datasets.
Analysis. REncoder can adaptively choose the number of
stored levels L, of the segment tree, i.e., make a space al-
location, according to datasets. Therefore, it remains low FPR
across all datasets. REncoderSS(SE) achieves lower FPR than
REncoder, especially in relatively unskewed datasets (amzn
and osmc). This is because in such datasets, keys and queries
are nearly uniformly distributed, enabling REncoderSS(SE) to
store higher levels (more significant information) than REn-
coder. The filter throughput of REncoder and REncoderSS(SE)
is similar, and both decrease in relatively skewed datasets
(face and wiki). This is because when keys and queries are
similar, REncoder and REncoderSS(SE) need to query the
Bloom filters more times to distinguish them. In summary,
REncoder(SS/SE) remains great FPR and filter throughput
across all real datasets.

VI. CONCLUSION

In this paper, we introduce REncoder, a novel range filter
with great space-time efficiency and accuracy. The key idea is
taking advantage of the locality to accelerate queries without
affecting accuracy. It has theoretical error bound and supports
various workloads. The experimental results show the superi-
ority of REncoder compared with the state-of-the-arts.

ACKNOWLEDGMENT

We thank Chenxingyu Zhao for his helpful discussions.

We

thank the anonymous reviewers for their construc-

tive comments. This work is supported by Key-Area Re-
search and Development Program of Guangdong Province
2020B0101390001, and National Natural Science Foundation
of China (NSFC) (No. U20A20179, 61832001)

[1]
[2]

[3]

[4]

[5]
[6]

[7]

[9]
[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

“Facebook. MyRocks.” http://myrocks.io.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in Proceedings of the
1st ACM symposium on Cloud computing, 2010, pp. 143-154.

T. Kahveci and A. Singh, “Variable length queries for time series data,”
in Proceedings 17th International Conference on Data Engineering.
IEEE, 2001, pp. 273-282.

R. Sears, M. Callaghan, and E. Brewer, “Rose: Compressed, log-
structured replication,” Proceedings of the VLDB Endowment, vol. 1,
no. 1, pp. 526-537, 2008.
“CockroachLabs. CockroachDB.”
cockroach.

K. Alexiou, D. Kossmann, and P-A. Larson, “Adaptive range filters
for cold data: Avoiding trips to siberia,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1714-1725, 2013.

H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo, “Surf: Practical range query filtering with fast succinct
tries,” in Proceedings of the 2018 International Conference on Manage-
ment of Data, 2018, pp. 323-336.

S. Luo, S. Chatterjee, R. Ketsetsidis, N. Dayan, W. Qin, and S. Idreos,
“Rosetta: A robust space-time optimized range filter for key-value
stores,” in Proceedings of the 2020 ACM SIGMOD International Con-
ference on Management of Data, 2020, pp. 2071-2086.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.
P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (Ism-tree),” Acta Informatica, vol. 33, no. 4, pp. 351-385,
1996.

“Apache. Accumulo.” https://accumulo.apache.org.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, pp. 1-26, 2008.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store.” IEEE Computer Society
Non-profit Org. US Postage PAID Silver Spring, MD, 2007.

S. Alsubaiee, A. Behm, V. Borkar, Z. Heilbron, Y.-S. Kim, M. J. Carey,
M. Dreseler, and C. Li, “Storage management in asterixdb,” Proceedings
of the VLDB Endowment, vol. 7, no. 10, pp. 841-852, 2014.

K. Ren, Q. Zheng, J. Arulraj, and G. Gibson, “Slimdb: A space-efficient
key-value storage engine for semi-sorted data,” Proceedings of the VLDB
Endowment, vol. 10, no. 13, pp. 2037-2048, 2017.

“Google LevelDB.” https://github.com/google/leveldb.

A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35-40, 2010.

H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas, “Coconut
palm: Static and streaming data series exploration now in your palm,”

https://github.com/cockroachdb/

in Proceedings of the 2019 International Conference on Management of

Data, 2019, pp. 1941-1944.

H. Kondylakis, N. Dayan, K. Zoumpatianos, and T. Palpanas, “Coconut:
sortable summarizations for scalable indexes over static and streaming
data series,” The VLDB Journal, vol. 28, no. 6, pp. 847-869, 2019.
“Dgraph. Badger Key-value DB in Go.” https:/github.com/dgraphio/
badger.

A. Kyrola and C. Guestrin, “Graphchi-db: Simple design for a scalable
graph database system—on just a pc,” arXiv preprint arXiv:1403.0701,
2014.

N. Dayan, M. Athanassoulis, and S. Idreos, “Optimal bloom filters and
adaptive merging for Ism-trees,” ACM Transactions on Database Systems
(TODS), vol. 43, no. 4, pp. 1-48, 2018.

(23]

[24]

(25]

[26]

(271

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

C. Luo and M. J. Carey, “Lsm-based storage techniques: a survey,” The
VLDB Journal, vol. 29, no. 1, pp. 393-418, 2020.

D. Comer, “Ubiquitous b-tree,” ACM Comput. Surv., vol. 11, no. 2, p.
121-137, jun 1979. [Online]. Available: https://doi.org/10.1145/356770.
356776

G. Graefe and H. Kuno, “Modern b-tree techniques,” in 2011 IEEE
27th International Conference on Data Engineering. 1EEE, 2011, pp.
1370-1373.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47-57.

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The r*-tree:
An efficient and robust access method for points and rectangles,” in
Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, 1990, pp. 322-331.

T. Sellis, N. Roussopoulos, and C. Faloutsos, “The r+-tree: A dynamic
index for multi-dimensional objects.” University of Maryland, Tech.
Rep., 1987.

G. M. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” 1966.

M. Goswami, A. Grgnlund, K. G. Larsen, and R. Pagh, “Approximate
range emptiness in constant time and optimal space,” in Proceedings of
the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms.
SIAM, 2014, pp. 769-775.

K. Vaidya, S. Chatterjee, E. Knorr, M. Mitzenmacher, S. Idreos, and
T. Kraska, “Snarf: a learning-enhanced range filter,” Proceedings of the
VLDB Endowment, vol. 15, no. 8, pp. 1632-1644, 2022.

E. R. Knorr, B. Lemaire, A. Lim, S. Luo, H. Zhang, S. Idreos, and
M. Mitzenmacher, “Proteus: A self-designing range filter,” in Proceed-
ings of the 2022 International Conference on Management of Data,
2022, pp. 1670-1684.

D. P. Mehta and S. Sahni, Handbook of data structures and applications.
Chapman and Hall/CRC, 2004.

F. P. Preparata and M. 1. Shamos, Computational geometry: an intro-
duction. Springer Science & Business Media, 2012.

“Intel instructions,” https://software.intel.com/sites/landingpage/
IntrinsicsGuide.

“Source code related to REncoder,” https://github.com/Range-Filter/
REncoder.

S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using bloom filters,” in Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer
communications, 2003, pp. 201-212.

G. Jacobson, “Space-efficient static trees and graphs,” in 30th annual
symposium on foundations of computer science. IEEE Computer
Society, 1989, pp. 549-554.

A. Broder and M. Mitzenmacher, “Network applications of bloom filters:
A survey,” Internet mathematics, vol. 1, no. 4, pp. 485-509, 2004.

J. Roozenburg, “A literature survey on bloom filters,” Research Assign-
ment, November, 2005.

A. Kirsch, M. Mitzenmacher, and G. Varghese, “Hash-based techniques
for high-speed packet processing,” in Algorithms for Next Generation
Networks. Springer, 2010, pp. 181-218.

S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of bloom filters for distributed systems,” IEEE Communications Surveys
& Tutorials, vol. 14, no. 1, pp. 131-155, 2011.

K. Li and G. Li, “Approximate query processing: What is new and where
to go? a survey on approximate query processing,” Data Science and
Engineering, vol. 3, pp. 379-397, 2018.

T. Yang, A. X. Liu, M. Shahzad, D. Yang, Q. Fu, G. Xie, and X. Li,
“A shifting framework for set queries,” IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 3116-3131, 2017.

Y. Peng, J. Guo, F. Li, W. Qian, and A. Zhou, “Persistent bloom filter:
Membership testing for the entire history,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1037-1052.
P. K. Vairam, P. Kumar, C. Rebeiro, and K. Veezhinathan, “Fadingbf:
A bloom filter with consistent guarantees for online applications,” IEEE
Transactions on Computers, 2020.

Q. Liu, L. Zheng, Y. Shen, and L. Chen, “Stable learned bloom filters
for data streams,” Proceedings of the VLDB Endowment, vol. 13, no. 12,
pp. 2355-2367, 2020.

R. Xie, M. Li, Z. Miao, R. Gu, H. Huang, H. Dai, and G. Chen, “Hash
adaptive bloom filter,” in 2021 IEEE 37th International Conference on
Data Engineering (ICDE). 1EEE, 2021, pp. 636-647.

[49] Y. Wu, J. He, S. Yan, J. Wu, T. Yang, O. Ruas, G. Zhang, and Hanover, Mass., 2013.
B. Cui, “Elastic bloom filter: Deletable and expandablefilter using elastic ~ [S1] “BOB Hash website,” http://burtleburtle.net/bob/hash/evahash.html.
fingerprints,” IEEE Transactions on Computers, 2021. [52] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and
[50] D. Abadi, P. Boncz, S. H. Amiato, S. Idreos, and S. Madden, The design T. Neumann, “Sosd: A benchmark for learned indexes,” arXiv preprint
and implementation of modern column-oriented database systems. Now arXiv:1911.13014, 2019.

