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ABSTRACT
1
Estimating the quantile of distribution, especially tail distribution,

is an interesting topic in data stream models, and has obtained

extensive interest from many researchers. In this paper, we pro-

pose a novel sketch, namely SketchPolymer to accurately estimate

per-item tail quantile. SketchPolymer uses a technique called Early
Filtration to filter infrequent items, and another technique called

VSS to reduce error. Our experimental results show that the ac-

curacy of SketchPolymer is on average 32.67 times better than

state-of-the-art techniques. We also implement our SketchPolymer

on P4 and FPGA platforms to verify its deployment flexibility. All

our codes are available at GitHub [1].

CCS CONCEPTS
• Theory of computation → Sketching and sampling; • In-
formation systems → Data stream mining; • Networks →
Network measurement.
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1 INTRODUCTION
1.1 Background and Motivation

It is vital to estimate the quantile of distribution, especially tail

distribution (e.g., 0.95 or 0.99 quantile) in practice. For example,

in network scenarios, latency distribution is often heavy-tailed in

reality [2–4], and users are usually sensitive to the worst-case la-

tency, so tail latency is usually more representative than other usual

latency. However, while most researchers focus on aggregated tail

quantile estimation [5, 6], few of them have realized the importance

of per-item tail quantile estimation, which means estimating tail

quantile for every distinct item rather than aggregating all items

as a whole. In fact, per-item tail quantile can be useful in many

situations, and below we show some use cases.

Case 1: Website management. Users usually care about their

personal experience on visiting the website. Even if the website

achieves low latency for overall requests, the experience of waiting

several seconds or even minutes for the website to respond can

probably discourage the user from visiting it ever since [7, 8]. As a

result, to obtain as many visitors as possible, website administrators

shall pay attention to the tail latency of every visitor (i.e., every
item).

Case 2: Attack detection. The latency of a single item can sud-

denly increase due to cyber attacks or offending applications [9, 10].

However, the aggregated tail latency may remain unchanged, as the

low latency of millions of packets can cover up this phenomenon.

As a result, we can only detect the attack by per-item tail quantile

measurement.

Per-item tail quantile estimation is fundamental and critical in

these cases. However, few prior work focuses on estimating per-

item tail quantile. Some techniques can estimate tail quantile [5,

6], but they are mainly concentrated on estimating aggregated

tail quantile, and they do not distinguish different items in data

streams. In theoretical computer science, state-of-the-art algorithms

for quantile estimation achieve high accuracy in theory [11–16],

but they are designed to estimate arbitrary quantile rather than tail

quantile, which means they inevitably record much unnecessary

information besides tail quantile, incurring a waste of time and

memory.

Fortunately, approximate streaming algorithms, namely sketch-

ing algorithms, can be applied to solve this challenging problem

in data stream models. Sketches can fulfill the need to filter infre-

quent items [17–19], and they can maintain the full information of

frequent items within small memory [20–23], which is important

in data stream models. Sketches have already been used to estimate

https://doi.org/10.1145/3580305.3599505
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quantiles in data streams [24–26], and we design a new sketch to

estimate per-item tail quantile while avoiding recording as much

unnecessary information as possible.

1.2 Our Proposed Solution
In this paper, we propose a new sketch, called SketchPolymer,

for estimating per-item tail quantile. SketchPolymer is memory-

efficient: It is compact enough to be placed on L3 cache. Sketch-

Polymer is accurate: Our experiments show that SketchPolymer

achieves 0.1 Average Logarithm Error while serving 20 million

items simultaneously with 5000KB memory. SketchPolymer is fast:

It takes 𝑂 (1) time for processing each item.

SketchPolymer includes 4 stages. Filter Stage is used to filter in-

frequent items. Polymer Stage records the frequency and maximum

value of every frequent item, and Splitting Stage and Verification

Filter keep the detailed information of these items. The key tech-

niques used in SketchPolymer are named Early Filtration and

VSS. We show these techniques below.

Key Technique I: Early Filtration. Infrequent items account for

the majority of data streams [27–29], but their tail quantile cannot

be accurately estimated due to their low frequency. As a result, it is

important to filter these infrequent items to make room for frequent

items. Inspired by the Cold Filter [18], we propose Filter Stage to

take on this role in SketchPolymer. For an incoming item 𝑒 , we first

query Filter Stage to check its frequency. If its frequency exceeds

a predefined threshold T , we start inserting it into the following
stages; Otherwise, we simply insert it into Filter Stage and return.

Our experimental results show that allocating a small proportion of

memory for Filter Stage can significantly lower the error of query

results (see Section 5 for more details).

Key Technique II: Value Splitting and Sharing (VSS). We use

logarithm to split all positive numbers into several disjoint intervals.

It works as follows: for an incoming item 𝑒 with value 𝑡 , we cal-

culate 𝑇 = ⌊log𝑎 𝑡⌋ as its logarithm value, where 𝑎 is a predefined

parameter for SketchPolymer, and record 𝑇 in our data structure

instead of 𝑡 . By VSS, we split frequent items into several intervals,

and items in the same interval share the same logarithm value. In

this way, we convert the quantile estimation problem to the fre-

quency estimation problem, and we record frequency rather than

value in SketchPolymer, which is more efficient and accurate and

can be solved using CMSketch [20] and Bloom Filter [30].

1.3 Key Contributions
This paper makes the following contributions:

• We propose a novel data structure, namely SketchPolymer,

which can automatically separate frequent items from infre-

quent items and record the information of the former for

accurate per-item tail quantile estimation.

• We provide rigorous mathematical analysis for SketchPoly-

mer to theoretically derive its error bound and time com-

plexity.

• We conduct extensive experiments on different datasets. The

results show that SketchPolymer outperforms existing algo-

rithms by 32.67 times in terms of error.

• We implement SketchPolymer on various platforms and ver-

ify its performance on both software and hardware plat-

forms.

2 PROBLEM STATEMENT AND RELATED
WORK

2.1 Problem Statement
The symbols frequently used in this paper and their meanings

are shown in Table 1.

Table 1: Symbols frequently used in this paper.

Notation Meaning
𝑒 A distinct item in data streams

𝑡 Value of a certain item

𝑇 Logarithm value

𝑎 Base of logarithm in SketchPolymer

T Threshold for Filter Stage

𝑑 (𝑘) Number of hash functions in Stage 𝑘

𝑛 (𝑘) Number of counters in Stage 𝑘

ℎ
(𝑘)
𝑖
(.) 𝑖𝑡ℎ hash function in Stage 𝑘

C (𝑘)
𝑖

𝑖𝑡ℎ counter array in Stage 𝑘

Definition 1. Data Stream. A data stream 𝑆 is a series of items
{𝑒1, 𝑒2, · · · , 𝑒𝑛, · · · } appearing in sequence. In this paper, every item
has its value 𝑡 .

Definition 2. Quantile. Given a multiset of numbers S =

{𝑎1, 𝑎2, · · · , 𝑎𝑛} and a percentage𝑤 , where 𝑎1 ≤ 𝑎2 ≤ · · · ≤ 𝑎𝑛 and
0 ≤ 𝑤 ≤ 1, the𝑤-quantile of multiset S is defined as 𝑎 ⌊𝑤 (𝑛−1) ⌋+1.

Per-item Tail Quantile Estimation: Given an arbitrary item 𝑒

and a quantile 𝑤 (usually close to 1, e.g., 0.95 or 0.99), the design
goal of SketchPolymer is to estimate the𝑤-quantile of 𝑒 .

2.2 Related Work
2.2.1 Quantile Estimation.

Traced back to Munro and Paterson who first proposed the idea

of quantile estimation [11], quantile estimation has become attrac-

tive to many researchers. Since any accurate quantile estimation

requires at least 𝑂 (𝑁 ) memory for a multiset with size 𝑁 , many

algorithms focus on returning an 𝜀-approximate estimation, which

means that it will return a number in [𝑟 − 𝜀𝑁, 𝑟 + 𝜀𝑁 ], where 𝑟 is
the real rank of the item. Manku, Rajagopalan and Lindsay pro-

posed an algorithm with𝑂 ( 1𝜀 log
2 (𝜀𝑁 )) space complexity [12], and

GK improved this complexity to 𝑂 ( 1𝜀 log(𝜀𝑁 )) [13]. However, all
these algorithms have to know 𝑁 in advance, and later, Felber and

Ostrovsky improved this bound to 𝑂 ( 1𝜀 log
1

𝜀 ) [14].
Other algorithms for quantile estimation use randomization,

which probably saves memory but has a small probability to fall

outside the interval. KLL algorithm [15] used this technique to

obtain𝑂 ( 1𝜀 log log
1

𝛿
) memory complexity with failure rate at most

𝛿 for the first time, and further, KLL
±
[16] updated this bound to

𝑂 ( 1𝜀 log
2
log

1

𝜀𝛿
) and supported delete operations.

DDSketch [25] is recently designed for estimating 𝑤-quantile

distribution in data streams. It divides all positive numbers into

several intervals by logarithm and uses buckets to record the fre-

quency in each interval. Moreover, when too many intervals have

frequency not equal to 0, DDSketch will merge adjacent buckets to

save memory. SQUAD [31] is another algorithm which focuses on

estimating per-item quantiles for heavy-hitters. It applies Reservoir
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Sampling [32] to sample items from the data stream, and constructs

sketches using Space Saving [33] to keep track of these items.

However, these algorithms are generally designed for estimating

full quantiles, while tail quantiles are more important in many

situations. Although they can be used to estimate per-item tail

quantile, these algorithms keep the information of small values as

well, which is unnecessary for tail quantile estimation.

2.2.2 Frequency Estimation.
CMSketch [20] is the simplest sketch for frequency estimation.

It is composed of 𝑑 arrays and each array has the same number of

counters. For every incoming item, CMSketch uses a hash function

to map it into a counter in every array, and increments the counter

by 1. When querying an item, CMSketch similarly locates these 𝑑

counters and returns the minimum of these values.

2.2.3 Membership Query.
Bloom Filter [30] is a compact data structure with high memory

efficiency. It consists of arrays of bit groups, and is often used to

judge whether an item belongs to a given set. For every coming

item, Bloom Filter uses hash functions to map it into several bits

and sets these bits to 1. When querying an item, Bloom Filter uses

the same hash functions to check whether all these bits are 1.

3 SKETCHPOLYMER ALGORITHM
In this section, we first propose the baseline solution for per-

item tail quantile estimation. Then we introduce the idea of VSS

and propose the initial version of SketchPolymer. We optimize the

SketchPolymer from two aspects and then present the final version

of SketchPolymer.

3.1 Baseline Solution
Our baseline solution consists of 𝑝 buckets B1, · · · ,B𝑝 , and each

bucket has two fields: frequency field and value field. Frequency

field is just a counter recording the total number of items which

have been mapped to this bucket. Value field consists of 𝑞 counters

to record 𝑞 maximum values in this bucket.

To insert item 𝑒 with value 𝑡 , we first use a hash function ℎ(.) to
map 𝑒 into bucket Bℎ (𝑒) . Then we update the frequency counter by

incrementing it by 1, and try to insert 𝑡 into the value field. There

are two cases:

Case 1: Bℎ (𝑒) still has at least one empty counter. In this case, we

just record 𝑡 in one counter and return.

Case 2: Bℎ (𝑒) does not have empty counters. Since we focus on

estimating tail quantile, the baseline solution shall mainly keep

large values rather than small values. Consequently, we find the

smallest value among 𝑞 counters in bucket Bℎ (𝑒) (suppose it is 𝑡 )
and compare 𝑡 with 𝑡 . If 𝑡 > 𝑡 , we evict 𝑡 and insert 𝑡 in this counter;

otherwise we do nothing and return.

The query operation is simple: to query 𝑤-quantile of item 𝑒 ,

we similarly map 𝑒 into bucket Bℎ (𝑒) . We calculate𝑚 = (1 −𝑤) ×
(Bℎ (𝑒) .𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 − 1) + 1, which is the rank of𝑤-quantile value

from large to small. Then if𝑚 ≤ 𝑞, we return the𝑚-largest value

in bucket Bℎ (𝑒) ; otherwise we return the smallest value recorded

in bucket Bℎ (𝑒) .
Although the baseline solution can be used to estimate per-item

tail quantile, it is inaccurate and memory-consuming, as it fails
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Figure 1: Idea of VSS

to filter infrequent items; Also, it keeps true values in the data

structure, which is a waste of space in practice.

3.2 Idea of Value Splitting and Sharing
The value of every frequent item has to be recorded to accurately

estimate per-item tail quantile. However, the naive idea of simply

keeping its real value may not work, as the order of magnitude of

value can vary from item to item. To avoid this problem, we propose

Value Splitting and Sharing (VSS) technique (See in Figure 1):

We use logarithm to split the value of all items into several intervals.

We first choose a positive number 𝑎 as the base of logarithm. To

reduce error, 𝑎 is usually greater than but very close to 1. Then,

for every item 𝑒 with its true value 𝑡 , we calculate 𝑇 = ⌊log𝑎 𝑡⌋ as
its logarithm value. In this way, every frequent item is separated

into several intervals, and items in the same interval share the

same logarithm value. The item 𝑒 ′ = (𝑒,𝑇 ) can be viewed as a new

item to be inserted into Splitting Stage and Verification Filter. After

query process, suppose SketchPolymer returns integer 𝑇 as the

𝑤-quantile of 𝑒 , we use exponential to get the result 𝑎𝑇 . In this

way, SketchPolymer maintains the information of these items to

the greatest extent without using too much memory.

3.3 The SketchPolymer Algorithm
Overview: In this paper, we propose a novel sketch, namely Sketch-

Polymer, to accurately estimate per-item tail quantile. The initial

version of SketchPolymer consists of three stages. To avoid record-

ing unnecessary information by infrequent items, Stage 1 (Filter

Stage) uses Early Filtration to separate frequent items and send

these items to the following stages. Stage 2 (Polymer Stage) and

Stage 3 (Splitting Stage) are designed for estimating tail quantile.

3.3.1 Idea of Early Filtration.
A naive idea for per-item tail quantile estimation is to record the

value of all items whether they are frequent items or infrequent

items. However, tail quantile of infrequent items cannot be accu-

rately estimated due to their low frequency. Also, the distribution of

real datasets is generally skew [27–29], which means the majority

of items in the data stream are infrequent items. To make full use

of this prior distribution, we apply Early Filtration technique,

which originates from the Cold Filter [18]: Filter Stage keeps the

frequency of every distinct item, and only items with frequency

exceeding the threshold are allowed to enter the following stages.
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Filter Stage Data Structure: Filter Stage is a CMSketch consisting

of 𝑑 (1) arrays: C (1)
1

, · · · , C (1)
𝑑 (1)

. Each array consists of 𝑛 (1) counters.

There are 𝑑 (1) hash functions ℎ
(1)
1

, · · · , ℎ (1)
𝑑 (1)

associating with 𝑑 (1)

arrays respectively. Each counter records the frequency of 𝑒 .

Filter Stage Operation (Algorithm 1-2): To insert an item 𝑒 ,

Filter Stage uses 𝑑 (1) hash functions to map 𝑒 into 𝑑 (1) counters
C (1)
1
[ℎ (1)

1
(𝑒)], · · · , C (1)

𝑑 (1)
[ℎ (1)

𝑑 (1)
(𝑒)] and increments these counters

by 1. When querying 𝑒 , Filter Stage will use the same hash functions

to check C (1)
1
[ℎ (1)

1
(𝑒)], · · · , C (1)

𝑑 (1)
[ℎ (1)

𝑑 (1)
(𝑒)]. Similarly to CMSketch,

Filter Stage will return the minimum of these values as the fre-

quency of 𝑒 .

Algorithm 1: Filter Stage Insertion Procedure

Input: an item 𝑒;

1 for 1 ≤ 𝑖 ≤ 𝑑 (1) do
2 C (1)

𝑖
[ℎ (1)

𝑖
(𝑒)] ← C (1)

𝑖
[ℎ (1)

𝑖
(𝑒)] + 1;

Algorithm 2: Filter Stage Query Procedure

Input: an item 𝑒;

1 𝑓 ← +∞
2 for 1 ≤ 𝑖 ≤ 𝑑 (1) do
3 𝑓 ← min{𝑓 , C (1)

𝑖
[ℎ𝑖 (𝑒)]};

4 return 𝑓 ;

3.3.2 Tail Quantile Estimation.
Rationale: Polymer Stage and Splitting Stage are designed for

estimating tail quantile of frequent items. Polymer Stage records

the frequency and maximum value of every frequent items, and

Splitting Stage records the frequency of every item after VSS.

Algorithm 3: Polymer Stage Insertion Procedure

Input: an item (𝑒,𝑇 );
1 for 1 ≤ 𝑖 ≤ 𝑑 (2) do
2 C (2)

𝑖
[ℎ (2)

𝑖
(𝑒)] .𝑓 ← C (2)

𝑖
[ℎ (2)

𝑖
(𝑒)] .𝑓 + 1;

3 C (2)
𝑖
[ℎ (2)

𝑖
(𝑒)] .𝑡 ← max{C (2)

𝑖
[ℎ (2)

𝑖
(𝑒)] .𝑡,𝑇 };

Algorithm 4: Polymer Stage Query Procedure

Input: an item 𝑒;

1 𝑓 ← +∞
2 𝑡 ← +∞
3 for 1 ≤ 𝑖 ≤ 𝑑 (2) do
4 𝑓 ← min{𝑓 , C (2)

𝑖
[ℎ (2)

𝑖
(𝑒)] .𝑓 };

5 𝑡 ← min{𝑡, C (2)
𝑖
[ℎ (2)

𝑖
(𝑒)] .𝑡};

6 return 𝑓 , 𝑡 ;

Polymer Stage Data Structure: Polymer Stage consists of 𝑑 (2)

arrays: C (2)
1

, · · · , C (2)
𝑑 (2)

. Each array consists of 𝑛 (2) buckets and 𝑑 (2)

hash functions are associated with these arrays. What is different

from traditional CMSketch is that each bucket has two fields: fre-

quency field and value field. Frequency field is similar to Filter

Stage, and value field records the maximum logarithm value.

Polymer Stage Operation (Algorithm 3-4): To insert an item

𝑒 with logarithm value 𝑇 = ⌊log𝑎 𝑡⌋, Polymer Stage uses 𝑑 (2)

hash functions to map 𝑒 into 𝑑 (2) buckets C (2)
1
[ℎ (2)

1
(𝑒)], · · · ,

C (2)
𝑑 (2)
[ℎ (2)

𝑑 (2)
(𝑒)]. The frequency field of these buckets will be in-

cremented by 1, and the value field of these buckets will be set to

the maximum of its initial value and 𝑇 . When querying 𝑒 , Polymer

Stage will similarly use hash functions to find these 𝑑 (2) buckets.
The frequency and maximum logarithm value will all be set to the

minimum of relating fields.

Splitting Stage Data Structure: Splitting Stage is a CMSketch

consisting of 𝑑 (3) arrays: C (3)
1

, · · · , C (3)
𝑑 (3)

. Each array consists of

𝑛 (3) counters and𝑑 (3) hash functions are associated with the arrays.
However, in Splitting Stage, every hash function takes both the item

𝑒 and the logarithm value 𝑇 as arguments. Each counter records

the frequency of every item with logarithm value equal to 𝑇 .

Splitting Stage Operation (Algorithm 5-6): To insert an item 𝑒

with logarithm value 𝑇 , Splitting Stage maps 𝑒 into 𝑑 (3) counters
C (3)
1
[ℎ (3)

1
(𝑒,𝑇 )], · · · , C (3)

𝑑 (3)
[ℎ (3)

𝑑 (3)
(𝑒,𝑇 )] and increments these coun-

ters by 1. To query 𝑒 with logarithm value 𝑇 , Splitting Stage will

again check these 𝑑 (3) counters and return the minimum of these

values.

Algorithm 5: Splitting Stage Insertion Procedure

Input: an item (𝑒,𝑇 );
1 for 1 ≤ 𝑖 ≤ 𝑑 (3) do
2 C (3)

𝑖
[ℎ (3)

𝑖
(𝑒,𝑇 )] ← C (3)

𝑖
[ℎ (3)

𝑖
(𝑒,𝑇 )] + 1;

Algorithm 6: Splitting Stage Query Procedure

Input: an item (𝑒,𝑇 );
1 𝑓 ← +∞;
2 for 1 ≤ 𝑖 ≤ 𝑑 (3) do
3 𝑓 ← min{C (3)

𝑖
[ℎ (3)

𝑖
(𝑒,𝑇 )], 𝑓 };

4 return 𝑓 ;

3.4 Memory Optimization: Counter Truncation
After VSS, frequent items are usually split into many items

according to their logarithm value. Hence, it will be memory-

inefficient to still use 32 bits for a counter in Splitting Stage. Also, we

are mainly interested in the tail distribution, and the frequency of

these items are generally small. To tackle this problem, we propose

Counter Truncation: Instead of using 32-bit counters, we only

allocate 8-bit counters for Splitting Stage. When we are about to

increment a counter, we first check whether the counter has achieve

its maximum value (255 here). If so, we keep its value and do noth-

ing. Our experiments show that instead of using 32-bit counters,

using more small counters improves the accuracy of SketchPolymer

(See in Section 5).

3.5 Accuracy Optimization: Overestimation
Avoidance

The three stages above can fulfill the requirement of estimating

per-item tail quantile. However, Splitting Stage is based on CMS-

ketch, which suffers from overestimation error in practice. Inspired

by the Bloom Filter, we propose Verification Filter in Stage 4 to

compensate for Splitting Stage. When querying item 𝑒 with loga-

rithm value 𝑇 , SketchPolymer will first check Verification Filter. If
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10 50 23 70 30 7 98 34
Stage 1: Filter Stage

e1t = 4563

e2t = 89
T = log1.189 = 47

Stage 2: Polymer Stage

Frequency
Value

950
45

100
70

37
19

88
103

71
12

280
92

Stage 4: Verification Filter

1 0 1 0 1 0 1 0 67 1 2 235 9 4 32

Stage 3: Splitting Stage

11

951

47

1 1

Figure 2: Example of Insertion

Stage 4: Verification Filter

1 0 1 0 1 0 1

10 50 23 70 30 7 98 34
Stage 1: Filter Stage

10 50 23 70 30 7 98 34

Frequency
Value

950
45

100
70

37
19

88
103

71
12

280
92

0 67 1 2 235 9 4 32

e3w = 0.95

m = (1 – 0.95) * 100 = 5

T 70 69 68 67

f 1 0 2 4

Stage 2: Polymer Stage

Stage 3: Splitting Stage

Figure 3: Example of Query

Verification Filter reports false for item (𝑒,𝑇 ), it will be considered
to not have come before, so SketchPolymer will not query Splitting

Stage and just return 0 as the frequency of item (𝑒,𝑇 ).
Verification Filter Data Structure: Verification Filter is a Bloom

Filter consisting of 𝑑 (4) arrays C (4)
1

, · · · , C (4)
𝑑 (4)

. Each array has 𝑛 (4)

bits. Similar to Splitting Stage, there are 𝑑 (4) hash functions and

each hash function takes the item 𝑒 and its logarithm value 𝑇 as

arguments.

Verification Filter Operation (Algorithm 7-8): To insert an item

𝑒 with logarithm value 𝑇 , Verification Filter maps 𝑒 into 𝑑 (4) bits
C (4)
1
[ℎ (4)

1
(𝑒,𝑇 )], · · · , C (4)

𝑑 (4)
[ℎ (4)

𝑑 (4)
(𝑒,𝑇 )] and sets all these bits to 1.

When querying (𝑒,𝑇 ), Verification Filter will return the AND of

these 𝑑 (4) bits.

Algorithm 7: Verification Filter Insertion Procedure

Input: an item (𝑒,𝑇 );
1 for 1 ≤ 𝑖 ≤ 𝑑 (4) do
2 C (4)

𝑖
[ℎ (4)

𝑖
(𝑒,𝑇 )] ← 1;

Algorithm 8: Verification Filter Query Procedure

Input: an item (𝑒,𝑇 );
1 for 1 ≤ 𝑖 ≤ 𝑑 (4) do
2 if C (4)

𝑖
[ℎ (4)

𝑖
(𝑒,𝑇 )] = 0 then

3 return false;

4 return true;

3.6 Our Final Version
Our final version of SketchPolymer consists of four stages as

above. The first three stages are all based on CMSketch, and the

Verification Filter is added in Stage 4 for overestimation avoidance.

The full operation of SketchPolymer can be summarized as follows:

Insertion (Algorithm 9): Given an item 𝑒 with value 𝑡 , we first

query Filter Stage to get its frequency. If its frequency reported

by Filter Stage does not exceed the predefined threshold T , we
simply insert 𝑒 into Filter Stage and finish insertion procedure.

Otherwise, we regard 𝑒 as a frequent item, calculate its logarithm

value 𝑇 = ⌊log𝑎 𝑡⌋ and insert (𝑒,𝑇 ) into Polymer Stage, Splitting

Stage and Verification Filter respectively.

Query (Algorithm 10): Given an item 𝑒 and a quantile 𝑤 , we

first query Polymer Stage to get its frequency 𝑓 and maximum

logarithm value𝑇 . Then we calculate𝑚 = (1−𝑤) × 𝑓 , which is the

number of items of 𝑒 with value greater than𝑤-quantile. Then, we

recursively query Splitting Stage and Verification Filter with item

𝑒 and logarithm value descending from 𝑇 until the sum of query

results exceeds𝑚. In this way, SketchPolymer finds the𝑤-quantile

of 𝑒 .

Algorithm 9: SketchPolymer Insertion Procedure

Input: an item (𝑒, 𝑡)
1 if FilterStage.query(𝑒)< T then
2 FilterStage.insert(𝑒);

3 return;

4 𝑇 ← ⌊log𝑎 𝑡⌋;
5 PolymerStage.insert(𝑒,𝑇);

6 SplittingStage.insert(𝑒,𝑇);

7 VerificationFilter.insert(𝑒,𝑇);

Algorithm 10: SketchPolymer Query Procedure

Input: an item 𝑒 , a quantile𝑤

1 𝑓 ,𝑇 ←PolymerStage.query(e);

2 𝑚 ← (1 −𝑤) 𝑓 ;
3 while𝑚 > 0 do
4 if VerificationFilter.query(𝑒,𝑇) then
5 𝑚 ←𝑚− SplittingStage.query(𝑒,𝑇);

6 𝑇 ← 𝑇 − 1;
7 return 𝑎𝑇+1;

A running example: For simplicity, we choose 𝑑 (1) = 𝑑 (2) =
𝑑 (3) = 𝑑 (4) = 1, T = 50 and 𝑎 = 1.1. Figure 2 shows a running

example of insertion procedure of SketchPolymer. When inserting

𝑒1 with value 4563, we first use a hash function to map 𝑒1 into a

counter in Filter Stage. Since Filter Stage returns 10 as its frequency,

which is smaller than the threshold, SketchPolymer just increments

this counter by 1 and finishes inserting procedure. When inserting

𝑒2 with value 89, we again query Filter Stage and Filter Stage returns

98. Since 98 is greater than the threshold, 𝑒2 is allowed to enter

Polymer Stage, Splitting Stage and Verification Filter. We get its

logarithm value by 𝑇 = ⌊log
1.1 89⌋ = 47. The frequency field of

Polymer Stage associated with 𝑒2 is incremented by 1 (from 950 to



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Jiarui Guo et al.

951), and the value field is set to the maximum value of its initial

value 45 and 𝑇 . Finally, we map (𝑒2, 47) into a counter in Splitting

Stage and increment it by 1 andmap it into a bit in Verification Filter

and set it to 1. Figure 3 shows a running example of query procedure

of SketchPolymer. To query the 0.95-quantile of 𝑒3, SketchPolymer

first queries Polymer Stage to get its frequency 100 and maximum

logarithm value 70. Next we calculate𝑚 = (1 − 0.95) × 100 = 5,

which shows that 5 of 𝑒3 have value greater than 0.95-quantile. Then

we use (𝑒3, 70) to query Splitting Stage and Verification Filter. Since

Verification Filter returns true for (𝑒3, 70), we reduce the query

result of Splitting Stage (here is 1) from𝑚, and𝑚 is now 4. Then

we query Verification Filter with (𝑒3, 69). Since Verification Filter

returns false for these arguments, we do nothing and start query

with (𝑒3, 68). Verification Filter returns true and Splitting Stage

returns 2 for 68, so𝑚 is reduced by 2 and is now 2. Finally we query

Splitting Stage and Verification Filter with (𝑒3, 67). As Verification
Filter returns true and Splitting Stage returns 4,𝑚will be reduced by

4 and will turn negative after this operation. Consequently, we stop

recursively query and return 1.167 ≈ 593.35 as the 0.95-quantile of

𝑒3.

4 MATHEMATICAL ANALYSIS
In this section, we first provide error bounds for SketchPolymer.

We derive the error bound of Polymer Stage and Splitting Stage

in the first step, then we give an error bound for SketchPolymer.

Finally we analyze the time complexity of SketchPolymer. Due

to space constraint, we only list the conclusions in this section.

Detailed proofs can be seen in Appendix A.

4.1 Error Bound
In this section, we assume that 𝑒 𝑗 is a frequent item, i.e., 𝑒 𝑗 suc-

ceeds to enter Polymer Stage, Splitting Stage and Verification Filter

in SketchPolymer. We obtain the error bound of SketchPolymer in

the following theorems:

Theorem 1. Let 𝑓𝑗 ,𝑇𝑗 be the real frequency and the real maximum
logarithm value of 𝑒 𝑗 , and ˆ𝑓𝑗 ,𝑇𝑗 be the estimated results reported by
Polymer Stage. Let 𝑁 denote the number of items in data streams,
and suppose𝑀 distinct items have maximum value greater than 𝑒 𝑗 .
Then given a small positive number 𝜀, the estimation error of 𝑓𝑗 and
𝑇𝑗 is bounded by

P( ˆ𝑓𝑗 ≥ 𝑓𝑗 − T + 𝜀) ≤
(

𝑁

𝜀𝑛 (2)

)𝑑 (2)
, (1)

and

P(𝑇𝑗 ≠ 𝑇𝑗 ) ≤
T
𝑓𝑗
+ 𝑑
(2)𝑀

𝑛 (2)
. (2)

Proof. See in Appendix A.1. □

Theorem 2. For an integer 𝑇 , let 𝑓𝑗,𝑇 be the real number of 𝑒 𝑗
with logarithm value equal to 𝑇 , and ˆ𝑓𝑗,𝑇 be the result reported by
Splitting Stage. 𝑓𝑗 and 𝑁 are defined similarly as above. Given a small
positive number 𝜀, If ˆ𝑓𝑗,𝑇 < 255 (to ensure that the 8-bit counter does
not overflow), then the estimation error of 𝑓𝑗,𝑇 is bounded by

P( | ˆ𝑓𝑗,𝑇 − 𝑓𝑗,𝑇 | ≥ 𝜀) ≤ 𝑒
− 𝑓𝑗

2T 𝑓𝑗,𝑇

(
𝜀−
T 𝑓𝑗,𝑇
𝑓𝑗

)2
+

(
𝑁

𝜀𝑛 (3)

)𝑑 (3)
. (3)

Proof. See in Appendix A.2. □

Theorem 3. Assume 𝑓𝑗 >> T and 𝑇𝑗 = 𝑇𝑗 . Let 𝑡 𝑗 be the real
𝑤-quantile of 𝑒 𝑗 , and 𝑡 𝑗 be the𝑤-quantile reported by SketchPolymer.
Suppose the real quantalie of 𝑡 𝑗 is �̂� , then |�̂�−𝑤 | < 𝜀 with probability
at least 1 −𝑂 (𝜀−𝑑 ), where 𝑑 = min{𝑑 (2) , 𝑑 (3) }.

Proof. See in Appendix A.3. □

4.2 Time Complexity
Theorem 4. Assume 𝑑 (1) , 𝑑 (2) , 𝑑 (3) and 𝑑 (4) are all very small.

The insertion time complexity of SketchPolymer for any arbitrary
item 𝑒 is 𝑂 (1).

Proof. To insert an arbitrary item 𝑒 , SketchPolymer first query

Filter Stage to get its frequency. Then, either 𝑒 is inserted into

Filter Stage, or 𝑒 is inserted into Polymer Stage, Splitting Stage

and Verification Filter. All of these processes can be done in 𝑂 (1)
time. □

5 EXPERIMENTAL RESULTS
In this section, we provide experimental results with SketchPoly-

mer. First, we describe the experimental setup in Section 5.1. Then,

we show how parameter settings affect SketchPolymer performance

in Section 5.2. We compare the performance of SketchPolymer and

other algorithms on different datasets in Section 5.3. Finally, we

analyze the effects of two optimizations in Section 5.4.

5.1 Experimental Setup
Implementation: We implement SketchPolymer and all other

algorithms in C++. In all experiments, we use Bob Hash [34] with

different hash seeds to implement the hash functions.

Computation Platform:We conducted all the experiments on a

server with one 18-core processor (36 threads, Intel(R) Core(TM)

i9-10980XE CPU @ 3.00GHz) and 128 GB DRAM memory. The

processor has 64KB L1 cache, 1MB L2 cache for each core, and

24.75MB L3 cache shared by all cores.

Metrics:
1) Average Logarithm Error (ALE): Since the orders of mag-

nitude of value can vary significantly, it is unreasonable to sim-

ply measure the error by absolute value. Suppose 𝑡1, 𝑡2, · · · , 𝑡𝑛
be the true quantile of all items, and 𝑡1, 𝑡2, · · · , 𝑡𝑛 be the esti-

mated quantile, the average logarithm error (ALE) is defined as

1

𝑛

∑𝑛
𝑖=1 | log2 𝑡𝑖 − log2 𝑡𝑖 | =

1

𝑛

∑𝑛
𝑖=1 | log2

𝑡𝑖
𝑡𝑖
|.

2) Throughput: We use million of operations (insertions and

queries) per second (Mops) to measure the throughput. We repeat

the experiment for 10 times and calculate the average results as our

throughput.

Datasets:
1) IP Trace: The IP Trace is streams of anonymous IP traces col-

lected from 2016 by CAIDA [35]. We regard the interval of two

consecutive packets as its value. We use 20 million items.

2) Seattle Dataset: The Seattle Dataset [36, 37] consists of round
trip times (RTTs) between several nodes in the Seattle network.

We treat RTTs between the same two nodes as the same item, and

regard RTT as its value.
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Figure 4: Effects of Numbers of Hash Functions
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Figure 5: Effects of Memory Allocation Ratio
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Figure 8: Effects of𝑤

3) Web Latency Dataset: The Web Latency Dataset [38] is col-

lected by Webget [39] on 182 probes distributed globally. We regard

fetch time of each request as value.

5.2 Experiments on Parameter Settings
In this section, we measure the effects of some key parameters of

SketchPolymer, namely, the number of hash functions in each stage,

the memory allocation ratio, the choice of the base of logarithm 𝑎,

the threshold T , and the query quantile𝑤 . We use CAIDA dataset

in these experiments, and ALE to measure these effects.

Effects of Numbers of Hash Functions (Figure 4(a)-4(d)): The
experimental results show that when allocated sufficient memory,
more hash functions usually works better. In this experiment, we vary

each 𝑑 (𝑘) from 1 to 6. The results shows that more hash functions

generally leads to smaller ALE, but it can also perform worse within

smaller space. Taking into consideration the fact that more hash

functions can have a detrimental influence on overall throughput,

we set 𝑑 (1) = 𝑑 (4) = 3, 𝑑 (2) = 𝑑 (3) = 5 by default.

Effects of Memory Allocation Ratio (Figure 5(a)-5(d)): The
experimental results show that most space shall be allocated to Split-
ting Stage. In each experiment, we vary the ratio of one stage in

a certain range, and keep the relative ratio of the other 3 stages

unchanged. The results show that a small ratio of memory for Filter

Stage, Polymer Stage and Verification Filter will be enough. Since

Splitting Stage records the frequency of all items after VSS, we allo-

cate 5% memory for Filter Stage, 30% memory for Polymer Stage,

50% memory for Splitting Stage, and 15% memory for Verification

Filter in our experiments.

Effects of 𝑎 (Figure 6): The experimental results show that the choice
of 𝑎 is generally a trade-off between memory and accuracy. We set 𝑎

to 1.1, 1.5 and 2 respectively in each experiment, and results show

that a larger 𝑎 performs better within a smaller memory. However,

if user allocates sufficient space to SketchPolymer, the ALE will be

minimized when 𝑎 is close to 1. To make balance between accuracy

and memory, we set 𝑎 = 1.5 in other experiments.

Effects of T (Figure 7): The experimental results show that the best
option of T is among 50 and 100.We try different value of T , and
find that a larger T is better when memory is small, as it can filter

as many infrequent items as possible in Filter Stage. However, a

larger T also risks losing the information of frequent items, as the

first T value of every item will not be recorded by SketchPolymer.

Taking both cases into account, we choose T = 50.
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Figure 9: ALE on Different Datasets
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Figure 10: Insertion Throughput on Different Datasets
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Figure 11: Query Throughput on Different Datasets

Effects of𝑤 (Figure 8): The experimental results show that Sketch-
Polymer performs well whatever quantile we set. We query 0.5, 0.75,

0.95 and 0.99 quantile of frequent items respectively, and results

show that ALE is close to 0 when memory is greater than 5000KB.

In fact, users can set𝑤 to any quantile they are interested in, and

we set𝑤 = 0.95 in other experiments.

5.3 Comparison with Baseline Solution and
Prior Work

In this section, we compare the performance of SketchPolymer

with baseline solution and prior work (GK, KLL, DDSketch, SQUAD)

on different datasets. Since some of these techniques (GK, KLL, DDS-

ketch) are not designed for per-item quantile estimation, we allocate

several buckets for these algorithms, which is similar to baseline

solution: Before insertion procedure, we use a hash function to

map the item 𝑒 into a bucket, and insert 𝑒 in this bucket. When

querying an item, we use the same function to locate a bucket and

return the quantile of all values in this bucket. Experimental results

(Figure 9(a)-11(c)) show that SketchPolymer largely outperforms

baseline solution and prior work on per-item tail quantile esti-

mation. On CAIDA dataset, SketchPolymer performs 32.67 times

better than other algorithms, and the ALE of SketchPolymer is less

than 0.1 on Seattle and Web dataset. Although the insertion and

query throughput of SketchPolymer is not the highest, it is close to

baseline solution and significantly higher than SQUAD.

5.4 Analysis on Two Optimizations
In this section, we measure the effects of two optimizations, i.e.,

memory optimization and accuracy optimization. We compare the

performance of SketchPolymer with and without two optimizations

respectively. We use CAIDA dataset in these experiments, and ALE

to measure these effects.

Effects of Memory Optimization (Figure 12(a)): The experimen-
tal results show that 8-bit counters for Splitting Stage is enough. We

compare the performance of using 8-bit, 16-bit and 32-bit counters

in Splitting Stage. The results show that the performance of using
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Figure 12: Effects of Two Optimizations

three kinds of counters are close with more than 8000KB mem-

ory. However, the ALE of 8-bit counters is smaller than 0.2 within

3000KB memory, which is significantly lower than 16-bit and 32-bit

counters.

Effects of Accuracy Optimization (Figure 12(b)): The experimen-
tal results show that Verification Filter can slightly improve accuracy.
We compare the performance of SketchPolymer with and without

Verification Filter. The results show that Verification Filter is impor-

tant for SketchPolymer even if it will take up part of the memory

of Splitting Stage. Verification Filter plays a remarkable role in

SketchPolymer when memory is among 3000KB and 4000KB. It still

slightly lowers the ALE when memory is large.

6 P4 IMPLEMENTATION
We have fully built a P4 prototype of SketchPolymer on the

Tofino switch [40]. Since the Tofino switch processes packets in

a pipeline manner, SketchPolymer cannot support more than one

hash function in Filter Stage, so we set 𝑑 (1) = 1. Also, the Tofino

switch does not support logarithmic operations, so we choose 𝑎 =

2 as the base of logarithm and SketchPolymer can calculate the

logarithm value by prefix matching. We implement SketchPolymer

using several registers and Stateful ALUs. We list the utilization of

various hardware resources on the Tofino switch in Table 2 when

𝑑 (2) = 𝑑 (3) = 𝑑 (4) = 1, 𝑛 (1) = 𝑛 (2) = 2
15
, 𝑛 (3) = 2

18
and 𝑛 (4) = 2

19
.

Table 2: Hardware Resources Used by SketchPolymer

Resource Usage Percentage
Hash bits 149 5.97%

Exact Xbar 54 7.03%

Ternary Xbar 8 2.02%

Stateful ALU 5 20.83%

SRAM 19 3.96%

TCAM 2 1.39%

Map RAM 17 5.9%

7 FPGA IMPLEMENTATION
We have implemented the SketchPolymer on the Altera FPGA.

The model 5SEEBF45I2 in Stratix V family is used as the core chip.

The architecture design diagram is illustrated in Figure 13. Two

hash functions are used, and the results are stored in two separate

RAMs. More hash functions can be supported if needed. FPGA does

not support logarithmic operations, so 𝑎 = 2was chosen to simplify

calculation.
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Figure 13: FPGA Implementation Architecture

The resource usage is listed in Table 3 when 𝑑 (1) = 𝑑 (2) = 𝑑 (3) =
𝑑 (4) = 2, 𝑛 (1) = 𝑛 (2) = 𝑛 (3) = 𝑛 (4) = 2

10
. 1) We use 1,560 logics,

less than 1% of the 359,200 total available. 2) We use 390 pins, 46% of

the total 840 pins, and 98.5% of used pins are for 64 bits data input

and output . 3) We use 526,336 bits of Block RAM, less than 1% of

the 54,067,200 total on-chip RAM. 4) We use 8 DSP Blocks, 2% of

the 352 total DSP Blocks. The clock frequency of our implemented

FPGA is 143.23 MHz, meaning processing speed of 143.23 Mops.

Table 3: SketchPolymer Performance on FPGA Platform

Resource Usage Percentage
Logics 1,560 <1%

Pins 390 46%

Block memory bits 526,336 <1%

DSP Blocks 8 2%

8 CONCLUSION
Tail quantile estimation is important in many scenarios. In this

paper, we propose SketchPolymer to estimate per-item tail quantile.

SketchPolymer uses Early Filtration to filter infrequent items,

and VSS to estimate tail quantile of frequent items efficiently. We

implement SketchPolymer on three platforms: CPU, P4 switches

and FPGA. Both theoretical and experimental results show that

SketchPolymer is much more fast and accurate compared to the

state-of-the-art. We have released our codes on GitHub [1].
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A PROOFS IN SECTION 4
A.1 Proof of Theorem 1

Proof. We define an indicator variable 𝐼 𝑗,𝑘,𝑙 as

𝐼 𝑗,𝑘,𝑙 =

{
1, if 𝑙 ≠ 𝑗 ∧ ℎ (2)

𝑘
(𝑙) = ℎ

(2)
𝑘
( 𝑗);

0, others.

Due to the independence of hash functions, we get

E𝐼 𝑗,𝑘,𝑙 = P(ℎ
(2)
𝑘
( 𝑗) = ℎ

(2)
𝑘
(𝑙)) = 1

𝑛 (2)
.

Let us define another variable

𝑋 𝑗,𝑘 =
∑︁
𝑙

𝑓𝑙 𝐼 𝑗,𝑘,𝑙

indicating the overestimation error caused by hash collision. By

the linearity of expectation,

E𝑋 𝑗,𝑘 =
∑︁
𝑙

𝑓𝑙E𝐼 𝑗,𝑘,𝑙 =
𝑁

𝑛 (2)
.

Notice that
ˆ𝑓𝑗 = 𝑓𝑗 − T +min{𝑋 𝑗,𝑘 : 1 ≤ 𝑘 ≤ 𝑑 (2) }. According to

the Markov Inequality, we get

P( ˆ𝑓𝑗 ≥ 𝑓𝑗 − T + 𝜀) = P(∀1 ≤ 𝑘 ≤ 𝑑 (2) , 𝑋 𝑗,𝑘 ≥ 𝜀)

=
[
P(𝑋 𝑗,𝑘 ≥ 𝜀)

]𝑑 (2) ≤ [
E(𝑋 𝑗,𝑘 )

𝜀

]𝑑 (2)
=

(
𝑁

𝜀𝑛 (2)

)𝑑 (2)
.

Hence Equation 1 holds.

As to the second part of the theorem, note that if the maximum

value of 𝑒 𝑗 appears after 𝑒 𝑗 enters Polymer Stage, and no items with

larger value collides with 𝑒 𝑗 , then the recorded maximum logarithm

value must be accurate. Let 𝑒𝑝1 , · · · , 𝑒𝑝𝑀 denote all distinct items

with maximum value larger than 𝑒 𝑗 , then

P(𝑇𝑗 = 𝑇𝑗 ) ≥
𝑓𝑗 − T
𝑓𝑗

× P(∃𝑖, C (2)
𝑖
[ℎ (2)

𝑖
(𝑒 𝑗 )] .𝑇 = 𝑇𝑗 )

=
𝑓𝑗 − T
𝑓𝑗

×
[
1 − P(∀𝑖, C (2)

𝑖
[ℎ (2)

𝑖
(𝑒 𝑗 )] .𝑇 > 𝑇𝑗 )

]
≥

𝑓𝑗 − T
𝑓𝑗

[
1 − 𝑑 (2)P(C (2)

𝑖
[ℎ (2)

𝑖
(𝑒 𝑗 )] .𝑇 > 𝑇𝑗 )

]
,

where

P(C (2)
𝑖
[ℎ (2)

𝑖
(𝑒 𝑗 )] .𝑇 > 𝑇𝑗 ) = 1 −

(
1 − 1

𝑛 (2)

)𝑀
≤ 𝑀

𝑛 (2)
.

Hence,

P(𝑇𝑗 = 𝑇𝑗 ) ≥
(
1 − T

𝑓𝑗

) (
1 − 𝑑 (2)𝑀

𝑛 (2)

)
≥ 1 − T

𝑓𝑗
− 𝑑 (2)𝑀

𝑛 (2)
,

so Equation 2 also holds. □

A.2 Proof of Theorem 2
Proof. We prove this theorem in two parts. The first part is

similar to Equation 1: Define

𝐼 𝑗,𝑇 ,𝑘,𝑙,𝑆 =

{
1, if ( 𝑗,𝑇 ) ≠ (𝑙, 𝑆) ∧ ℎ (3)

𝑘
( 𝑗,𝑇 ) = ℎ

(3)
𝑘
(𝑙, 𝑆);

0, others.

and

𝑋 𝑗,𝑇 ,𝑘 =
∑︁
(𝑙,𝑆)

𝑓𝑙,𝑆 𝐼 𝑗,𝑇 ,𝑘,𝑙,𝑆 ,

then E𝑋 𝑗,𝑇 ,𝑘 = 𝑁

𝑛 (3)
.

P( ˆ𝑓𝑗,𝑇 − 𝑓𝑗,𝑇 ≥ 𝜀) = P(∀1 ≤ 𝑘 ≤ 𝑑 (3) , 𝑋 𝑗,𝑇 ,𝑘 ≥ 𝜀)

=
[
P(𝑋 𝑗,𝑇 ,𝑘 ≥ 𝜀)

]𝑑 (3) ≤ [
E𝑋 𝑗,𝑇 ,𝑘

𝜀

]𝑑 (3)
=

(
𝑁

𝜀𝑛 (3)

)𝑑 (3)
.

To prove the second part of the theorem, it is worth noticing

that the only explanation to
ˆ𝑓𝑗,𝑇 < 𝑓𝑗,𝑇 is that items with logarithm

value 𝑇 come before 𝑒 𝑗 enters Splitting Stage, so the information

w.r.t. (𝑒 𝑗 ,𝑇 ) is lost. We define a variable 𝑋 as the number of items

with logarithm value𝑇 which come before 𝑒 𝑗 enters Splitting Stage,

and suppose 𝑓𝑗 is large enough, then 𝑋 can be approximated to

obey binomial distribution: 𝑋 ∼ 𝐵(T , 𝑓𝑗,𝑇
𝑓𝑗
). So 𝜇 = E𝑋 =

T 𝑓𝑗,𝑇
𝑓𝑗

. Let

𝛿 =
𝑓𝑗
T 𝑓𝑗,𝑇

(
𝜀 − T 𝑓𝑗,𝑇

𝑓𝑗

)
. Applying Chernoff Bound, we get

P( ˆ𝑓𝑗,𝑇 − 𝑓𝑗,𝑇 ≤ −𝜀) ≤ P(𝑋 ≥ 𝜀)

= P(𝑋 ≥ (1 + 𝛿)𝜇) ≤ 𝑒−
𝜇𝛿2

2 = 𝑒
− 𝑓𝑗

2T 𝑓𝑗,𝑇

(
𝜀−
T 𝑓𝑗,𝑇
𝑓𝑗

)2
.

Applying both inequality, we get

P( | ˆ𝑓𝑗,𝑇 − 𝑓𝑗,𝑇 | ≥ 𝜀) = P( ˆ𝑓𝑗,𝑇 − 𝑓𝑗,𝑇 ≥ 𝜀) + P( ˆ𝑓𝑗,𝑇 − 𝑓𝑗,𝑇 ≤ −𝜀)

≤ 𝑒
− 𝑓𝑗

2T 𝑓𝑗,𝑇

(
𝜀−
T 𝑓𝑗,𝑇
𝑓𝑗

)2
+

(
𝑁

𝜀𝑛 (3)

)𝑑 (3)
.

So Equation 3 holds. □

A.3 Proof of Theorem 3
Proof. Since 𝑓𝑗 >> T , we approximate Equation 1 as

P( ˆ𝑓𝑗 ≥ 𝑓𝑗 + 𝜀) ≤
(

𝑁

𝜀𝑛 (2)

)𝑑 (2)
. (4)

Equation 3 can also be simplified as

P( ˆ𝑓𝑗,𝑇 ≥ 𝑓𝑗,𝑇 + 𝜀) ≤
(

𝑁

𝜀𝑛 (3)

)𝑑 (3)
.

and we can prove

P

(
𝑇+𝑅−1∑︁
𝑠=𝑇

ˆ𝑓𝑗,𝑇 ≥
𝑇+𝑅−1∑︁
𝑠=𝑇

𝑓𝑗,𝑇 + 𝜀
)
≤

(
𝑁𝑅

𝜀𝑛 (3)

)𝑑 (3)
. (5)

Let 𝑙 = ⌊log𝑎 𝑡 𝑗 ⌋ and ˆ𝑙 = ⌊log𝑎 𝑡 𝑗 ⌋. Both ˆ𝑓𝑗 and ˆ𝑓𝑗,𝑇 suffer from

overestimation error. The former will lead to underestimation of 𝑡 𝑗 ,

and the latter will lead to overestimation of 𝑡 𝑗 . By the definition of

𝑤 and �̂� , we know that
(1 −𝑤) 𝑓𝑗 ≈ 𝑓𝑗,𝑙 + · · · + 𝑓𝑗,𝑇𝑗

,

(1 −𝑤) ˆ𝑓𝑗 ≈ ˆ𝑓
𝑗,ˆ𝑙
+ · · · + ˆ𝑓𝑗,𝑇𝑗

,

(1 − �̂�) 𝑓𝑗 ≈ 𝑓
𝑗,ˆ𝑙
+ · · · + 𝑓𝑗,𝑇𝑗

.

If𝑤 − �̂� ≥ 𝜀, then

(1 −𝑤) ˆ𝑓𝑗 ≈ ˆ𝑓
𝑗,ˆ𝑙
+ · · · + ˆ𝑓𝑗,𝑇𝑗

≥ 𝑓
𝑗,ˆ𝑙
+ · · · + 𝑓𝑗,𝑇𝑗

≈ (1 − �̂�) 𝑓𝑗 ,

which means𝑤 − �̂� ≤
ˆ𝑓𝑗−𝑓𝑗
𝑓𝑗
(1 −𝑤). Applying Equation 4, we get

P(𝑤 − �̂� ≥ 𝜀) ≤ P
(
ˆ𝑓𝑗 − 𝑓𝑗 ≥

𝜀 𝑓𝑗

1 −𝑤

)
≤

(
𝑁 (1 −𝑤)
𝜀 𝑓𝑗𝑛

(2)

)𝑑 (2)
.
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Similarly, if �̂� −𝑤 ≥ 𝜀, then

ˆ𝑓
𝑗,ˆ𝑙
+ · · · + ˆ𝑓𝑗,𝑇𝑗

≈ (1 −𝑤) ˆ𝑓𝑗 ≥ (1 −𝑤) 𝑓𝑗
≈ (�̂� −𝑤) 𝑓𝑗 + (𝑓𝑗,ˆ𝑙 + · · · + 𝑓𝑗,𝑇𝑗

) .

Hence

𝑇𝑗∑︁
𝑠=ˆ𝑙

ˆ𝑓𝑗,𝑠 −
𝑇𝑗∑︁
𝑠=ˆ𝑙

𝑓𝑗,𝑠 ≥ (�̂� −𝑤) 𝑓𝑗 .

Applying Equation 5, we get

P(�̂� −𝑤 ≥ 𝜀) ≤ P ©«
𝑇𝑗∑︁
𝑠=ˆ𝑙

( ˆ𝑓𝑗,𝑠 − 𝑓𝑗,𝑠 ) ≥ 𝜀 𝑓𝑗
ª®¬

≤
(
𝑁 (𝑇𝑗 − ˆ𝑙 + 1)

𝜀 𝑓𝑗𝑛
(3)

)𝑑 (3)
≤

(
𝑁 (𝑇𝑗 − 𝑙 + 1)

𝜀 𝑓𝑗𝑛
(3)

)𝑑 (3)
.

Finally, we get

P( |�̂� −𝑤 | < 𝜀) = 1 − P( |�̂� −𝑤 | ≥ 𝜀)

≥ 1 −
(
𝑁 (1 −𝑤)
𝜀 𝑓𝑗𝑛

(2)

)𝑑 (2)
−

(
𝑁 (𝑇𝑗 − 𝑙 + 1)

𝜀 𝑓𝑗𝑛
(3)

)𝑑 (3)
= 1 −𝑂 (𝜀−𝑑 ),

which finishes our proof. □
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