
IEEE/ACM TRANSACTIONS ON NETWORKING 1

SteadySketch: A High-Performance Algorithm for
Finding Steady Flows in Data Streams

Zhuochen Fan , Xiangyuan Wang, Xiaodong Li , Jiarui Guo , Graduate Student Member, IEEE, Wenrui Liu ,
Haoyu Li, Sheng Long , Zheng Zhong, Tong Yang , Member, IEEE, Xuebin Chen, and Bin Cui , Fellow, IEEE

Abstract— In this paper, we study steady flows in data streams,
which refers to the flows whose arrival rate is always non-zero
and around a fixed value for several consecutive time windows.
To find steady flows in real time, we propose a novel sketch-based
algorithm, SteadySketch, aiming to accurately report steady flows
with limited memory. To the best of our knowledge, this is the
first work to define and find steady flows in data streams. The key
novelty of SteadySketch is our proposed reborn technique, which
reduces the memory requirement by 75%. Our theoretical proofs
show that the negative impact of the reborn technique is small.
Experimental results show that, compared with the two compar-
ison schemes, SteadySketch improves the Precision Rate (PR)
by around 79.5% and 82.8%, and reduces the Average Relative
Error (ARE) by around 905.9× and 657.9×, respectively. Finally,
we provide three concrete cases: cache prefetch, Redis and
P4 implementation. As we will demonstrate, SteadySketch can
effectively improve the cache hit ratio while achieving satisfying
performance on both Redis and Tofino switches. All related codes
of SteadySketch are available at GitHub.

Index Terms— Data streams, measurement, steady flows,
sketch algorithm, cache, Redis, P4, performance.

I. INTRODUCTION

A. Background and Motivation

NOWADAYS, network measurement and monitoring have
become a research hotspot in the network field. It pro-

vides indispensable information for various network manage-
ment tasks, such as traffic behavior analysis [2], [3], quality

Manuscript received 6 May 2023; revised 21 March 2024 and 15 July
2024; accepted 12 August 2024; approved by IEEE/ACM TRANSACTIONS
ON NETWORKING Editor S. M. Kim. This work was supported in part
by the National Key Research and Development Program of China under
Grant 2022YFB2901504; in part by China Postdoctoral Science Foundation
under Grant 2023TQ0010, Grant GZC20230055, and Grant 2024M750102;
and in part by the National Natural Science Foundation of China (NSFC)
under Grant U20A20179 and Grant 62372009. The preliminary version of
this paper titled “SteadySketch: Finding Steady Flows in Data Streams”
[1] was published in the Proceedings of the 2023 IEEE/ACM 31st Inter-
national Symposium on Quality of Service (IWQoS), July 27, 2023 [DOI:
10.1109/IWQoS57198.2023.10188743]. (Corresponding author: Tong Yang.)

Zhuochen Fan, Xiangyuan Wang, Xiaodong Li, Jiarui Guo, Wenrui Liu,
Haoyu Li, Sheng Long, Zheng Zhong, Tong Yang, and Bin Cui are with
the National Key Laboratory for Multimedia Information Processing, School
of Computer Science, School of Electronics Engineering and Computer Sci-
ence, Peking University, Beijing 100871, China (e-mail: fanzc@pku.edu.cn;
wangxiangyuan@stu.pku.edu.cn; lxdong0128@gmail.com; ntguojiarui@pku.
edu.cn; liuwenrui@pku.edu.cn; lihy@pku.edu.cn; lgenhogns@pku.edu.cn;
zheng.zhong@pku.edu.cn; yangtong@pku.edu.cn; bin.cui@pku.edu.cn).

Xuebin Chen is with Heibei Key Laboratory of Data Science and Applica-
tion, Tangshan Key Laboratory of Data Science, North China University of
Technology, Tangshan 063210, China (e-mail: chxb@ncst.edu.cn).

Digital Object Identifier 10.1109/TNET.2024.3444488

of service/experience [4], [5], performance diagnosis [6], and
anomaly detection [7], [8], [9], [10]. In addition to the above
tasks, a very important research interest is to define and
find new patterns in high-speed data streams, such as burst
flows [11], periodic flows [12], and quadratic flows [13], etc.

This paper defines steady flow, a new pattern in network data
streams. In real-world data streaming scenarios, data stream
often arrives at high speed, and each flow that composes
it may appear multiple times. We divide the data stream
into many time windows. Given a time window and a flow
e in this window, suppose e appears x times, we define
the arrival rate of e as x. For p continuous time windows,
if the arrival rate of a flow is non-zero and steady (the variance
of arrival rate is less than a given threshold), it should be
categorized as a steady flow.

Since steady flow has certain “predictability”, it is an impor-
tant data stream pattern with numerous applications. Here,
we show three typical ones as follows. 1) Wireless Sensor
Networks. Sink node of WSN is responsible for collecting and
processing the data from other sensor nodes [14]. Generally,
the sensor node that sends steady flows would have higher
data reliability, which is important for data processing of
sink nodes. 2) Network Bandwidth Pre-Allocation. In any
highly dynamic network, a flow with a steady connection
and transmission speed often means that it has higher priority
than the transient flows which accounts for the majority of
the network [15]. Thus, we can pre-allocate the bandwidth
for these flows in advance to improve the quality of network
service [16]. 3) Steady Cache Line. In this scenario, a flow
refers to a cache line in the cache replacement problem.
A steady cache line has a higher probability of recurrence in
the next few time windows [17]. We can reduce cache thrash
by avoiding steady cache lines being evicted and ultimately
improve cache hit ratios. In addition to these more intuitive
ones, there is reason to believe that there are many other appli-
cations of the steady flow that should not be underestimated,
for example, speeding up some machine learning algorithms
by reducing running time [18].

To the best of our knowledge, this is the first work to
define steady flows, and no existing literature has proposed
the same or similar definition. The related problem is finding
persistent flows [19], [20], [21], [22] and K-persistent spread
estimation [23], [24], [25]. A flow is defined as a persistent
flow if the number of time windows where it appears exceeds
a given threshold [22]. In other words, the statistical process

https://orcid.org/0000-0003-0042-1828
https://orcid.org/0000-0002-3534-8045
https://orcid.org/0000-0003-1551-7646
https://orcid.org/0000-0002-5589-0085
https://orcid.org/0000-0002-4162-3445
https://orcid.org/0000-0003-2402-5854
https://orcid.org/0000-0003-1681-4677

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 1. The persistent flow e1 and the steady flow e2 are two different
types of flows. e1 is not concerned with its frequency size and continuity in
the occurrence window. As long as the frequency in that window is not 0,
whether it is 1 or 99, the effect is the same: persistence is incremented by
1. Conversely, e2 is concerned with both its frequency size and continuity in
the occurrence window.

of a persistent flow is only related to whether the flow has
appeared in a window, but not to the size or variance of
the arrival rate. For steady flows, instead, we focus on the
size of the arrival rate and the variance of the arrival rate
across several continuous windows. Figure 1 is shown to more
visually distinguish between persistent flows and steady flows,
where the arrival rate of steady flow is the frequency (number
of occurrences) in the window. In short, there is currently no
solution specifically designed for detecting steady flows in real
time. In other words, existing solutions cannot ideally detect
steady flows even if they can be forcibly implemented.

B. Our Proposed Solution

In this paper, in order to find steady flows, we first propose
a strawman solution composed of multiple Count-Min (CM)
sketches [26]. However, we find that there are limitations in
terms of speed, accuracy, and memory-efficiency. To address
these limitations, we propose the first version to optimize
speed. Then, we propose the second version to optimize
accuracy and the third to further optimize memory usage.
Finally, we integrate the three versions and present the final
version, namely SteadySketch. Our key novelty lies in the
memory optimization: reborn technique (see Section III-D).
Below we show the rationale of the reborn technique.

The key idea of reborn technique is rebirth with offset
variance calculation. In data stream scenarios, flows with large
arrival rates are always more important than flows with smaller
arrival rate, but we cannot know the size of the arrival rate in
advance. Therefore, it seems that we have to use large counters
(e.g., 32 bits or even 64 bits) for all flows to record their
arrival rate. However, using large counters will make our data
structure too large to be held in a small cache. Therefore,
we aim to use small counters to record both small arrival rates
and large arrival rates. If a small counter overflows, we regard
this as a rebirth: a finite cyclic group Z256 in theory [27]. Once
a rebirth occurs, it will cause the loss of the most significant
bit of the frequency, which can further cause the loss of
accuracy in the variance calculation. For example, if there are
three counters: 253, 254, and 255, suppose that the incoming
flow updates the counter of 255 to 0, we call it a rebirth.
In this case, the normal variance calculated by the reborn

values (Fv{253, 254, 0}=21421)1 in the counters is very large,
while actually the real variance (Fv{253, 254, 256}=2.33)
is very small. In this way, we propose the offset variance
calculation. The key idea is to offset the values in the counters
by a fixed value, and recalculate the variance of the new
values to make the calculated variance close to the real value.
In the above example, we can offset the values {253, 254,
0} by 128 and get {125, 126, 128} (−128 = 128 in Z256).
The variance calculated is the same as the real value, i.e.,
Fv{253, 254, 256}=Fv{125, 126, 128}. Therefore, if a flow is
a steady flow, we can always accurately report it as a steady
flow. With a small probability P ′, there will be a few false-
positive reports: some flows that are not steady might be
reported as steady flows. According to our theoretical results,
P ′ is very small, and the negative impact of reborn technique
on accuracy is very minor (see Section IV-B for details).

Further, our experimental results show that SteadySketch
achieves higher accuracy by accommodating much more coun-
ters in the same memory space. Compared with the strawman
solution, SteadySketch is more memory efficient, more accu-
rate and faster: it achieves over 96% PR with 50KB memory
in CAIDA Dataset [28] for finding steady flows, and the
throughput has been improved by more than 1.7× on average.
Finally, we implement SteadySketch on cache replacement,
Redis, and a P4 switch, respectively, and the evaluation results
show that SteadySketch can significantly improve the system
performance. More details are provided in Section V. We have
released our source code at GitHub [29].
Key Contributions:
• We propose and define a new problem: finding steady

flows in data streams, which has not been studied before
but is important to many applications.

• We propose a novel sketch named SteadySketch to
address the above problem with high accuracy and high
speed in small memory.

• We provide concise theoretical results by strict derivation.
We theoretically prove that the reborn technique has a
slight effect on accuracy and then give the error bound
of reborn.

• We conduct extensive experiments, and the results show
that our solution significantly outperforms the two com-
parison schemes in finding steady flows. Particularly,
SteadySketch improves the PR by about 79.5% and
82.8%, and decreases the ARE by about 905.9× and
657.9×, respectively.

II. PROBLEM STATEMENT & RELATED WORK

In this section, we first define the problem for finding steady
flows in data streams in Section II-A, and then introduce the
basic sketch algorithms that may be involved in Section II-B.
The symbols frequently used in this paper are shown in Table I.

A. Problem Statement

Steady refers to the situation which continues or develops
gradually without any interruptions and is not likely to change

1Fv(.) is a function of variance calculation that returns the calculated
variance value.

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 3

TABLE I
SYMBOLS FREQUENTLY USED IN THIS PAPER

quickly. In data streams, it manifests as the arrival rate of a
flow which fluctuates slightly around a fixed value without
interruption for a period of time. Therefore, we characterize
steady flow from two aspects: continuity and stability.
Temporary steady flow: Given a data stream, we divide it
into fixed-width time windows w1, w2, w3, Given a flow
e and a variance threshold H , the arrival rate of e in the time
windows are r1, r2, r3, The function of Fv(.) is to calcu-
late the variance and return the variance value. If there exist
p consecutive time windows wt−p+1, . . . , wt−1, wt, where

Fv(rt−p+1, . . . , rt−1, rt) ≤ H

and

ri > 0, ∀i ∈ {t, t− 1, . . . , t− p + 1}

then e is one steady flow, and we report it as ⟨e, t⟩. t is the
time window of e becoming a standard steady flow.
Persistent steady flow: The data stream is divided into
multiple fixed-width time window. In each time window, there
could be multiple temporary steady flows. Given a series
of temporary steady flows {⟨e1, t1⟩ , ⟨e2, t1⟩ , ⟨e1, t2⟩ , . . .},
we could try to merge steady flows with the same flow
ID. Persistent steady flows ⟨e, t1, t2⟩ are reported only when
steady flows ⟨e, t⟩ (t1 ≤ t ≤ t2) are all found. It indicates
that the steady process of e lasts from t1 to t2. Therefore,
persistent steady flows can be simply regarded as a subset of
temporary steady flows, and their applications are consistent,
as shown in Section I-A.

B. Typical Sketches for Data Streams

1) Membership Query: A Bloom filter [30] is a compact
data structure with high spatial efficiency. It uses bit groups to
represent a set concisely, and can judge whether a flow belongs
to the set. It consists of an array of m bits and is associated
with k independent hash functions. Given a flow, it is hashed
to k different mapped bits and set to 1. For membership query,
the Bloom filter checks whether all k mapped bits are 1.
Because it is space-saving and efficient, it is widely used and
has produced many variants [31], [32], [33].

2) Frequency Estimation: The Count-Min (CM) sketch [26]
consists of d arrays Ai(1 ≤ i ≤ d), each consists of w
counters, and Ai is associated with a hash function hi(.).
Given an incoming flow e, it increments the d mapped counter

Fig. 2. Examples of insertion in the strawman solution with 3 hash functions
and w CM sketches. The counters marked green are frequencies of previous
p time windows and the sketch CM2 is selected to represent the current time
window.

Ai[hi(e)] by 1. To query e, CM sketch only reports the
minimum among the d mapped counters. CM sketch has been
widely used in many scenarios and has derived many variants,
such as Conservative Update (CU) [34], Count [35], and many
other typical sketches [11], [36], [37], [38], [39]

3) Finding Frequent Flows: The most typical algorithms
are Space-Saving [40] and Unbiased Space-Saving [41]. They
both use a data structure called Stream-Summary to keep the
top-k frequent/elephant flows. When the Stream-Summary is
full and a non-recorded flow arrives, Space-Saving directly
replaces the least frequent flow with this new flow, while
Unbiased Space-Saving uses probability to replace the least
frequent flow to achieve unbiased estimation. State-of-the-art
sketch-based solutions for finding top-k elephant flows mostly
prefer to accurately separate elephant flows from large-scale
mice flows, such as ElasticSketch [42], HeavyKeeper [43], and
LadderFilter [44], etc.

III. THE STEADYSKETCH

In this section, we introduce different solutions for finding
steady flows. First, we propose the strawman solution based on
CM sketch [26]. Further, we propose optimization schemes in
terms of speed, accuracy and memory utilization, and present
the final version in Section III-E. Finally, we discuss the
difference of temporary and persistent steady flows, and add
a new data structure for finding persistent steady flows.

A. The Strawman Solution

As shown in Figure 2, our strawman solution is based on
CM sketch [26] (Section II-B.2). We construct the strawman
solution with w CM sketches, in which p sketches to contain
the flow information in past p time windows, one CM sketch
is used to contain the flow information of current time, and
the other is reserved for the next time window. Thus, the w
must be set greater than p + 2.

For each incoming flow e with time window t, the CM
sketch representing the current time hashes it to a bucket
in each array, and increments the counters by 1. Then, the
variance of frequency is calculated by the counters of the
mapped buckets in previous p sketches. If the variance is less
than the steady threshold H , we report the steady flow ⟨e, t⟩.

The strawman solution could indeed be used to report steady
flows. However, its low accuracy, low throughput, and large
memory consumption restrict its practical applications.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

B. Speed Optimization

The strawman solution consists of multiple sketches that
require multiple memory accesses to calculate the variance,
which greatly reduces throughput. Therefore, we propose a
new data structure that merges multiple sketches into one,
reducing the time complexity of the query to O(1). Inspired
by the principle of locality, we set the counters in the same
location of different sketches into one bucket. In this way,
we construct a sketch with only d bucket arrays, and each
bucket consists of multiple counters to maintain the frequen-
cies of different time windows. When querying frequencies to
calculate the variance, only one memory access is required per
array. Through the above optimization, memory accesses are
reduced by w times, which greatly improves the throughput.

C. Accuracy Optimization

The key idea of accuracy optimization lies in continuity
checking. It refers to checking if the flow appears consecu-
tively in previous p time windows. Due to limited memory and
hash collisions, it is hard to determine whether it is interrupted
for some small flows. Especially in real-world data streams,
most flows are small/mouse flows, checking the continuity of
flows with counters of sketch is hard and space consuming.

Based on the above challenges, we propose SteadyFilter
to filter out those flows that are uninterrupted in previous p
time windows (continuity checking). Inspired by the Bloom
filter [30] (Section II-B.1), we utilize the bits group to maintain
the arrival information for the flows. In SteadyFilter, each
bucket consists of multiple bits to record the appearance of a
flow in different windows. In this way, the accuracy is greatly
improved at the cost of slight extra memory usage.

D. Memory Optimization

The key novelty of this paper lies in this optimization.
The main innovation is the proposal of the reborn technique.
In SteadySketch, we optimize the memory efficiency and
reduce the counters to 8 bits, which is sufficient for most
flows. However, this poses challenges for accurate frequency
statistics of elephant flows due to their risk of overflow. Thus,
we propose the reborn technique, the key of which is rebirth
and offset variance calculation.
Rebirth: In abstract algebra, a cyclic group is a group that can
be generated by one element G = {e, a, a−1, a2, a−2, · · · } =
⟨a⟩. It is already well known that every finite cyclic group
with n elements is isomorphic to a group of integers modulo
n, which is Zn = {0, 1, · · · , n − 1}. Inspired by the concept
of group, the value of an 8-bit counter can be regarded as a
finite cyclic group G = Z256 = {0, 1, · · · , 255}. Once the
frequency is greater than 255, the rebirth is triggered and the
value increments from 0 again.
Offset Variance Calculation: The rebirth being triggered
indicates that the frequency has not been well recorded. Thus,
we propose the offset variance calculation to ensure the accu-
racy of variance calculation. Initially, we calculate the normal
variance using the raw data as usual. Next, we calculate the
offset variance. The innovation of offset variance calculation is
that we offset the frequencies by a fixed value: we increment

Fig. 3. Examples of insertion in SteadyFilter with one hash function. All the
buckets are initialized to (1, 1, 0, 1, 0, · · · , 1). The bits marked red represent
the current time window, while the green ones are previous p time windows.

the values by 128. In this way, the overflowed data can be
contiguous. Then, we calculate the variance again with the
new offset values.
Example: A steady flow appears 248, 258, 260 times in
three time windows, recorded as 248, 2, 4 in the respective
counters. In the normal variance calculation, the variance result
calculated by the original data in the counters is 13339, while
the real frequency variance is 27. In this case, the normal
variance is significantly larger than the real frequency variance.
In the offset variance calculation, the frequency is recalculated
as 120, 130, 132, and the variance value is the same as the
real variance.

E. Our Final Version

Integrating the above three techniques, SteadySketch
includes two parts: a SteadyFilter and a RollingSketch. Next,
we introduce the two parts in details as follows.

1) SteadyFilter:
Similar to the typical Bloom filter [30], SteadyFilter consists

of k bucket arraysA1,A2, · · · ,Ak, and k hash functions g1(.),
g2(.), · · · , gk(.). Each bucket consists of w bits, representing
the appearance of a flow in w time windows. When querying,
if the ith bit in the bucket is set, it indicates that the flow has
reached in the ith time window.

Figure 3 shows the data structure of SteadyFilter of the
version with one hash function. In this figure, e1, e2 and
e3 are the flows inserted into SteadyFilter at time of t1,
t2 and t3 respectively. The bits marked red represent the time
windows of t1, t2 and t3 in the mapped buckets, while the
green ones are the previous p time windows. If a flow is
recognized as uninterrupted and first comes in the current time
window, it would be marked with Tpf , like e2 in Figure 3.
Insertion (Algorithm 1): Given an incoming flow e and
timestamp t, we hash it to k mapped buckets of SteadyFilter
A1[g1(e)], A2[g2(e)], · · · , Ak[gk(e)] using the hash func-
tion g1(.), g2(.), · · · , gk(.). Next, we first select the bucket
Ai[gi(e)] and check the bit of Ai[gi(e)][t%w] to determine
whether it comes the first time. Then, we select the bit of
(t− j)%w (1 ≤ j ≤ p) in the bucket separately to check the
continuity of flow e. Once the flow is identified as first-arriving
and contiguous, RollingSketch (explain later) manipulates this
flow by setting the temporary variable Tpf . Finally, we set the

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 5

Algorithm 1 Insertion Procedure for SteadyFilter
Input: input a coming flow e with the timestamp t
Output: output the flag Tpf

1 Tpf = 0; Tf = 0; Tp = 0;
2 for i← 1 to k do
3 Tf += Ai[gi(e)][t % w]
4 for j ← 1 to p do
5 Tp += Ai[gi(e)][(t− j) % w];

6 A[gi(e)][t % w] = 1;

7 if Tp == k × p && Tf == 0 then
8 Tpf = 1

Fig. 4. Examples of insertion in RollingSketch, assuming one hash function
is used and p is set to 4. In addition, ① ② ③ ④ in the figure represent the
sequence of insertion.

bit of Ai[gi(e)][t%w] to 1, indicating that the flow has come
to the current time window.

2) RollingSketch:
RollingSketch consists of d arrays, each of which being

associated with a hash function. Figure 4 shows the data
structure of RollingSketch with one array, which looks like
a cylinder. In this paper, the cylinder is set to be cut into γ
slots, each slot consists of w cells. Each cell records the flow
frequency in a time window. Thus, a slot can record the flow
frequencies of w time windows.
Insertion (Algorithm 2): We first select the slots B1[f1(e)],
B2[f2(e)], · · · , Bd[fd(e)] in each array with hash functions
f1(.), f2(.), · · · , fd(.). We use the Si(1 ≤ i ≤ d) to denote
the slot selected in each array. Then, we select the cell Si[t%w]
and increment it by 1. The insertion process is shown in
Figure 4 and marked as ① ② and ③. It can be summarized
as selecting the slot representing the flow in each array, then
choosing the cell representing the current time window in the
mapped slot, and turning the counter clockwise one grid.
Report (Algorithm 2): First, we select the values in the
cells of Si[(t − j)%w](1 ≤ j ≤ p) to calculate the normal
variance V0. Next, we perform the offset variance calculation
(Section III-D): increment the cells by 128 and recalculate the
variance to calculate the variance V0 and V1. Once one of
the two variances is smaller than the threshold H , we report

Algorithm 2 Operations Procedure for RollingSketch
Input: input a coming flow e with the timestamp t
Output: output the steady flow (e, t)

1 for i← 1 to d do
2 B[fi(e)][t % w] + +;
3 if Tpf == 1 then
4 for j ← 1 to p do
5 tl = (t − j) %w;
6 G[0][j]← B[fi(e)][tl];
7 G[1][j]← (G[0][j] + 128)%256;

8 V0 = Fv(G[0]); // Fv is the function of
variance calculation

9 V1 = Fv(G[1]);
10 if V0 < H ∥ V1 < H then
11 report steady flow ⟨e, t⟩;

the flow e as a steady flow ⟨e, t⟩, where t represents the time
when the flow e becomes a steady flow. In Figure 4, the report
process is marked as ④, the blue cells representing the previous
frequencies are read out in a cache line, and used to calculate
the variance V0 and the offset variance V1. If the variances
meet the condition, flow e will be reported as one steady flow
⟨e, t⟩.

Algorithm 3 Clear Procedure
Input: current time window t and the time window tp

of last flow
1 if t ̸= tp then
2 for each i ∈ [1, d] do
3 tn = (t + 1) % w;
4 for each j ∈ [0, len(Ai)] do
5 Ai[j][tn] = 0;

6 for each j ∈ [0, len(Bi)] do
7 Bi[j][tn] = 0;

Clear Strategy (Algorithm 3): As the time window increases,
there are not enough bits and cells in each bucket to accom-
modate all time windows. If we select the cells representing
the current time window to clear, we have to put the incoming
packets into the buffer queue first, which is not practical in
high-speed data streams. Therefore, we select the bits and cells
of the next time window in the SteadyFilter and RollingSketch,
and set them to 0 when the time window switches. In this way,
the clear operation can be implemented in parallel without
much impact on throughput.

3) Summary: In SteadySketch, we separately design
different processing schemes for various types of flows in data
streams as follows:

Case 1: Elephant flows: such flows may lead to counter
overflows. We propose the reborn technique to make amend-
ments for the accuracy loss caused by overflow.

Case 2: Medium-sized flows: the frequencies of such flows
can be well recorded and calculated by the counters normally.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 5. Insertion examples in stage 2 and the parameter p is set as 5.

Case 3: Small flows: the majority of flows in a data stream.
It is hard to identify the continuity of a flow in limited memory.
In this case, we use SteadyFilter to specifically identify the
continuity of flows.

F. Finding Temporary and Persistent Steady Flows

As for finding temporary steady flows, the above algorithm
is fully capable of reporting the temporary steady flows in
every time window. However, it cannot effectively report
persistent steady flows. In order to find persistent steady flows,
we additionally add Stage 2 to cooperate with RollingSketch,
where Stage 2 is named to distinguish it from the part of
finding temporary steady flows as Stage 1 (i.e., SteadySketch
itself or the strawman solution). Stage 2 is designed to record
the steady duration of the steady flows. Figure 5 shows the
data structure and the insertion process of Stage 2. Below we
show the details.
Data Structure: Stage 2 consists of an array of l buckets,
and each bucket has four cells. Let Gi be the ith bucket, and
Gi[j] be the jth cell in bucket Gi. For each cell, it is designed
with the following three fields: 1) A flow_ID field Gi[j].ID
records the ID of the steady flows, and we call the flow in the
cell as the residing flow. 2) A start time field Gi[j].ts
records the start time of the steady flow as a residing flow. 3)
A recent time field Gi[j].te records the recent time of the
steady flow as a residing flow. The duration of a steady flow is
represented by the interval ∆T , i.e., ∆T = Gi[j].te−Gi[j].ts.
All fields in the data structure are initialized to 0 or Null.
Insertion: When inserting flow e into Stage 2, we first map
the flow to a bucket Gv by computing the hash function h(e).
Next, we try to insert it. There are four cases as follows:

Case 1: Insertion. If e is not in the bucket and there is
still at least one empty cell. We select an empty cell, insert
⟨e, t⟩ into the bucket, and set the ID of e to Gv[j].ID, the
timestamp ts, te to t− p and t, respectively.

Case 2: Eviction. If the recent time te of the residing flow
ep in the cell is not the last time t − 1, it means that ep is
no longer steady. Thus, we report the flow ep as a persistent
steady flow ⟨ep, Gv[j].ts, Gv[j].te⟩. Then, the fields in cell are
replaced by [e, t− p, t].

Case 3: Increment. If e is in the bucket, and Gv[j].te equals
to t − 1. It shows that e is still steady. We increment Gv[j].te
by 1.

Case 4: Replacement. If the bucket cannot satisfy the above
three cases, it means that all flows in the bucket are still steady.
In that case, we use ∆T to find the shortest persistent steady
flow, and replace it with a certain probability. Then, we kick
the residing flow with P , and replace Gv[j].ID and Gv[j].te
with ⟨e, t⟩, respectively, without Gv[j].ts replacement. The
definition of P is shown in Equation (1):

P =
1

te − ts−p
(1)

Examples: In Figure 5, we give examples of four insertion
cases. For the temporary steady flow ⟨e1, 21⟩ and ⟨e2, 30⟩,
both of them map into the same bucket. In the bucket, there
is exactly one residing flow is e1, and its steady process is
on-ging. Thus, we directly increase the recent time of e1.
As for e2, there is still one empty cell in the bucket, so we
insert the information of flow e2 into the empty cell directly.
At the time of 26 and 17, RollingSketch report two temporary
steady flows e4 and e5 respectively, which are mapped into
the same bucket. We select the cell of e4 and try to insert the
temporary steady flow ⟨e4, 26⟩, but the recent time of residing
flow shows that the steady process of e4 has been interrupted.
Thus, we evict and report is as one persistent steady flow
⟨e4, 5, 15⟩, and insert e4 as a new one. For flow e5, because
there is no empty cell, we choose the flow with the shortest
duration and perform probability replacement.
Report: There are two ways to report the persistent steady
flows. The main way is to directly traverse the buckets of
Stage 2 and return the flows, i.e., (⟨e, ts, te⟩ pairs). There are
also a few persistent steady flows reported by being evicted
during flows insertion, such as the e4 in Figure 5.

IV. MATHEMATICAL ANALYSIS

In this section, we compare our algorithm with strawman
solution and provide theoretical bounds to illustrate the supe-
riority of our solution.

A. Role of SteadyFilter

Theorem 1: For any flow e that fails to appear consecu-
tively from the (t− p+1)-th window to the t-th window, let q
denote the probability of SteadySketch wrongly reporting ⟨e, t⟩
as a steady flow, q̂ denote the probability of RollingSketch
without SteadyFilter wrongly reporting ⟨e, t⟩ as a steady flow,
and ε denote the false positive rate (FPR) of SteadyFilter, then

q ≤ εq̂. (2)
Proof: Assume that e does not arrive in window

t1, · · · , tk, where t − p + 1 ≤ t1 < · · · < tk ≤ t.
Since our SteadySketch is composed of a SteadyFilter and
a RollingSketch, a flow e is wrongly reported as a steady
flow only if e cheats both data structures. Let Ai denote the
event of SteadyFilter reports false positive in ti-th window,
B denote the event of RollingSketch wrongly reports e. From
conditional probability we know that

q = P (SteadySketch reports e)
= P (A1 · · ·AkB)
= P (B) · P (A1 · · ·Ak|B)

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 7

= q̂P (A1 · · ·Ak|B). (3)

Assume that whether SteadyFilter or RollingSketch makes
mistakes are independent and whether the SteadyFilter makes
mistakes on each window are independent, we get

q = q̂ · P (A1 · · ·Ak)
= q̂ · P (A1) · · ·P (Ak)

≤ q̂εk ≤ εq̂. (4)

since k ≥ 1. Hence (2) holds. Here, it is assumed that
SteadyFilter and RollingSketch are independent of each other
by using independent hash functions. □
Experimental analysis: We conduct experiments to validate
Theorem 1. The main goal of this experiment is to test the
effectiveness of SteadyFilter in filtering out unqualified flows,
and the experimental design and results are as follows (k is set
to 3 and CAIDA Dataset [28] is used): 1) Keep SteadyFilter
to count the correct reporting of steady flows (Figure (6a)); 2)
Remove SteadyFilter and count the correct reporting of steady
flows (Figure (6b)); 3) Count the average proportion of 1 in
SteadyFilter and FPR (Figure (6c)). The results show that the
PR after removing SteadyFilter drops sharply, verifying that
its filtering effect is significant. In other words, after removing
SteadyFilter, it is no longer possible to detect flows with a
frequency of 0 in a certain window.

Corollary 1: Assume that the N ′ flows that fail to arrive for
p windows in a row are falsely reported by the RollingSketch
to be steady flows. Then after adding the SteadyFilter, the
number of flows N which will still be reported to be steady
among these flows satisfies

EN ≤ εN ′, (5)

where EN is the expectation number of N .

B. Error Bound of RollingSketch

In this part, we assume that our RollingSketch uses 8-bit
counters, and strawman solution uses 32-bit counters. Both
algorithm use the same number of counters and use only one
hash function (i.e. w = 1). We first analyze the error bound
of the strawman solution, then we provide an error bound for
RollingSketch. We first analyze the error bound of variance
for strawman solution through Theorem 2. Then, we apply
Lemma 3 and 4 to show that, under certain conditions,
strawman solution and RollingSketch report the same variance.
Finally, we come to the conclusion: the probability that the
difference between the new and old variance is larger than
an error bound is bounded. In other words, we save 75%
memory without sacrificing the performance of RollingSketch
too much.

Theorem 2: For an arbitrary flow e and p consecutive win-
dows t−p+1, · · · , t, let Z1, · · · , Zp denote its real frequency
in each window, and X1, · · · , Xp denote its frequency reported
by strawman solution. Let v, v̂ denote the real variance and
the variance reported by strawman solution respectively. For
an arbitrary small number ε, strawman solution guarantees

|v̂ − v| ≤ 2εZ̄ + ε2 (6)

with probability at least 1− Np
εγ , where N denotes the number

of items in each window, γ denotes the number of counters in
CM sketch in strawman solution, and Z̄ = 1

p (Z1 + · · ·+ Zp).
Proof: Note that

v̂ − v =
1
p

p∑
i=1

X2
i −

1
p2

(
p∑

i=1

Xi

)2

− 1
p

p∑
i=1

Z2
i +

1
p2

(
p∑

i=1

Zi

)2

=
1
p

p∑
i=1

(Xi + Zi)(Xi − Zi)

− 1
p2

p∑
i=1

(Xi + Zi)
n∑

i=1

(Xi − Zi).

Since strawman solution uses CM sketches, we have Zi ≤
Xi ≤ Zi + ε with probability at least 1 − N

εγ [26]. Applying
union bound, strawman solution guarantees Zi ≤ Xi ≤ Zi +
ε,∀1 ≤ i ≤ p with probability at least 1−Np

εγ . In this situation,
we get

v̂ − v ≤ 1
p

p∑
i=1

(Xi + Zi)(Xi − Zi)

≤ 1
p

p∑
i=1

(2Zi + ε) · ε = 2εZ̄ + ε2,

and

v̂ − v ≥ − 1
p2

p∑
i=1

(Xi + Zi)
p∑

i=1

(Xi − Zi)

≥ − 1
p2
· (2pZ̄ + pε) · pε = −2εZ̄ − ε2.

So Equation 6 holds. □
Lemma 3: For a flow e and an arbitrary timestamp t, let

g0, g1 be its frequency reported by RollingSketch, f be its fre-
quency reported by strawman solution, then (f − g0)%256 =
0, |g1 − g0| = 128.

Proof: This lemma is a simple property of rebirth. Note
that rebirth happens only when g0 = 256, and its value will
change to 0 immediately, hence the two equality holds. □

Lemma 4: For a flow e and p consecutive windows t− p+
1, · · · , t, let X1, · · · , Xp denotes the frequency of e in each
window reported by strawman solution and

M = max{Xi : 1 ≤ i ≤ p}, m = min{Xi : 1 ≤ i ≤ p}.

If M − m < 128, then RollingSketch will report the same
variance as strawman solution.

Proof: We resort X1, · · · , Xp as x1, · · · , xp, s.t. x1 ≤
· · · ≤ xp. Since M −m = xp − x1 < 128, there exists some
integer l, s.t. 0 ≤ x1 − 128l ≤ x2 − 128l ≤ · · · ≤ xk−128l ≤
127 < 128 ≤ xk+1 − 128l ≤ · · · ≤ xp − 128l ≤ 255.
During the calculation process, the sequence of numbers is
kept unchanged, guaranteeing that the variance of the statistics
are reflected correctly. Next we show that this value is actually
the minimum among our calculation of variance. Note that for

8 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 6. Experimental analysis of steadyfilter for theorem 1.

two arbitrary integers x and l, (x + 256l)%256 = x%256,
hence the only way for a smaller variance is

y1 ≜ (x1 + 128)%256 = x1 + 128,

· · ·
yk ≜ (xk + 128)%256 = xk + 128,

yk+1 ≜ (xk+1 + 128)%256 = xk+1 − 128,

· · ·
yp≜(xp + 128)%256 = xp − 128.

If k = 0 or k = p, then all xi will increment or decrement
128, which makes the variance unchanged; otherwise, define
x̄ = 1

p (x1 + · · ·+xp), ui = xi− x̄, and s2, ŝ2 be the variance
of x1, · · · , xp; y1, · · · , yp. Then u1 + · · ·+ up = 0, and

s2 =
1
p

p∑
i=1

(xi − x̄) =
1
p

p∑
i=1

u2
i , (7)

ŝ2 =
1
p

p∑
i=1

(yi − ȳ)2

=
1
p

 k∑
i=1

(ui + 128)2 +
p∑

j=k+1

(uj − 128)2


− 1

p2
[128(2k − p)]2

=
1
p

 p∑
i=1

u2
i + 256

 k∑
i=1

ui −
p∑

j=k+1

uj

+ 1282p

−1282 (2k − p)2

p

]
=

1
p

[
p∑

i=1

u2
i + 512(u1 + · · ·+ uk) +

1282(4pk − 4k2)
p

]
.

(8)

Hence

ŝ2 − s2 =
512
p2

[
p(u1 + · · ·+ uk) + 128(kp− k2)

]
=

512
p2

(
kpū− + 128kp− 128k2

)
, (9)

where ū− is defined as ū− = 1
k (u1 + · · · + uk). Since xp −

x1 < 128, then up − u1 < 128. Hence for i = k + 1, · · · , p,

ui ≤ up < 128 + u1 ≤ 128 + ū−. Finally, we get{
u1 + · · ·+ uk=kū−,

uk+1 + · · ·+ up ≤ (p− k)(128 + ū−)

⇒ 0 =
p∑

i=0

ui ≤ kū− + (p− k)(128 + ū−)

⇒ ū− ≥ 128(k − p)
p

. (10)

Applying this inequality, we get

ŝ2 − s2 ≥ 512
p2

[
128k(k − p) + 128kp− 128k2

]
= 0, (11)

which shows that the variance reported by the RollingSketch
is accurate. □

Corollary 2: For a flow e, let ṽ denote the variance
reported by strawman solution. If M − m ≤ 128, then
RollingSketch guarantees

|ṽ − v| ≤ 2εZ̄ + ε2 (12)

with probability at least 1− Np
εγ .

Corollary 3: For a flow e, assume its frequency in each
window is reported to be X1, X2, · · · by strawman solution.
If RollingSketch wrongly reports ⟨e, t⟩ as steady flow but
strawman solution does not, then ∃t− p + 1 ≤ i ̸= j ≤ t, s.t.
Xi −Xj ≥ 128.

Since steady flows should occur a similar number of times
in each window, we conclude that these flows cannot be steady
flows.

V. EXPERIMENTAL RESULTS

In this section, we present comprehensive experimental
results on SteadySketch. First, we describe the experimental
setup in Section V-A, including datasets and metrics,
etc. Second, we explain how parameter settings affect
SteadySketch’s performance in Section V-B. Third,
we evaluate SteadySketch’s performance on finding
transient and persistent steady flows on different datasets
in Sections V-C and V-D, respectively, and compare it with
the strawman solution. Finally, we provide three concrete
applications of PISketch: cache prefetch, Redis and P4
implementation, in Sections V-E, V-F, and V-G, respectively.

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 9

Fig. 7. Effect of the parameter: k.

A. Experimental Setup

Datasets: We use a total of three real-world datasets and one
synthetic dataset as follows.
1) CAIDA Dataset: This dataset is streams of anonymized
IP traces collected by CAIDA [28]. In CAIDA Dataset, there
are around 30M flows and 900K distinct flows.
2) Campus Dataset: This dataset is comprised of IP packets
captured from the network of our campus. In Campus Dataset,
there are 10M flows in total, belonging to 1M distinct flows.
3) MAWI Dataset: This dataset of real traffic traces is
provided by the MAWI Working Group [45]. In MAWI
Dataset, there are around 13M flows.
4) Synthetic Dataset: We generate a synthetic dataset that
follows the Zipf [46] distribution using Web Polygraph [47],
an opensource performance testing tool. In Synthetic Datasets,
there are around 32M flows, and the skewness is 1.5.

We divide each of the datasets above into multiple time
windows sized at around 10K flows.
Competitor algorithms: In fact, as long as each window size
is set to 1, any data structure used to find persistent flows
can also be used to replace the CM sketch for frequency
estimation. Therefore, in addition to strawman solution,
SteadySketch’s competitors may also consist of schemes for
finding persistent flows (On-off sketch [22], PIE [20], etc.).
Here, we design an algorithm composed of several On-off
sketches to find steady flows, called Steady-On-Off, in which
the operations that it replaces the CM sketches are designed
as follows. Its data structure is very similar to CM sketch,
consisting of d arrays, each array has w buckets, but each
bucket has two fields, one is a counter and the other is an On-
off flag. For insertion operations, when one bucket in each
array is hashed: if there is On in the bucket, the counter
is incremented by 1 and the flag is switched to Off; if the
bucket is Off, nothing is done. For query operations, output
the smallest value among all d counters that have been hashed.
When each window ends, switch all flags to On. The rest is
consistent with strawman solution.
Implementation: We implement SteadySketch and the straw-
man solution in C++. The hash functions are implemented
using the 32-bit Murmur Hash (obtained from the open-source
website [48]) with different initial seeds.
Computation Platform: We conduct all the experiments on
a machine with one 8-core processor (8 threads, Intel(R)
Core(TM) i7-9700U CPU @ 3.00GHz) and 16 GB DRAM

Fig. 8. Effect of the parameter: d.

memory. The processor has 512KB L1 cache, 2MB L2 cache
for each core, and 12MB L3 cache shared by all cores.
Metrics:
1) Precision Rate (PR): PR is the ratio of the number of
correctly steady flows to the number of steady flows reported.
2) Recall Rate (CR): CR is the ratio of the number of
correctly reported steady flows to the number of correctly
steady flows.
3) Mean Squared Error (MSE): We define the MSE as
1
n

∑n
i=1

(
Vi − V̂i

)2

, where Vi is the real variance of steady

flow ei, V̂i is the estimated variance of steady flow, and the n
is the correct number of steady flows reported.
4) Average Relative Error (ARE): We define the ARE as
1
|Ψ|
∑

ei∈Ψ
|fi−f̂i|

fi
, where fi is the real duration of persistent

steady flow ei, f̂i is its estimated duration of persistent steady
flow, and Ψ is the query set.
5) Throughput: We use Million of operations (insertions) per
second (Mops) to measure the throughput. Experiments are
repeated 10 times and the average throughput is reported.

B. Experiments on Parameter Settings

In this section, we measure the effects of some key param-
eters of SteadySketch, namely, the number of hash functions
k in SteadyFilter, the number of hash functions d in RollingS-
ketch, the the variance threshold H for the steady flows, the
threshold p for time window period, and the ratio r of the
memory size of SteadyFilter to the memory size of the whole
SteadySketch. We use CAIDA Dataset in these experiments,
and PR and CR to evaluate the effects.
1) Effect of k (Figure 7(a) - 7(b)): The experimental results
show that the best value for k is 3. In this experiment,
we fix the d to 2. When a flow is being inserted, more hash
functions mean higher accuracy, but the number of counters
per array will be reduced in fixed memory, which leads to
accuracy reduction. Under the same memory, as k becomes
larger, PR first increases and then decreases, while CR first
increases and then reach a stable value, after which it does
not change significantly. Considering the influence of space
and hash number on accuracy, we set the parameter k to 3.
2) Effect of d (Figure 8(a) - 8(b)): The experimental results
show that the optimal value for d is 2. In this experiment,
we fix the k to 3. Under the same memory, as d becomes
larger, CR first increases and then decreases, while PR does

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 9. Effect of the parameter: H .

Fig. 10. Effect of the parameter: p.

not change significantly. However, more hash functions mean
more memory access and thus the throughput is reduced.
To better balance the CR and throughput, we set d = 2.
3) Effect of H (Figure 9(a) - 9(b)): Our experimental results
show that the PR and CR do not vary significantly under dif-
ferent H values. In this experiment, we fix the k to 3 and d to
2. As H becomes larger, CR gradually increases but gradually
approaches each other as the memory becomes larger, while
PR does not change significantly. In the definition, smaller
H represents higher requirements for stability and higher
requirements for the accuracy of frequency estimation. Thus,
the experimental results show that the larger H is, the higher
accuracy we can achieve in a small memory. Since this value
is set as small as possible, we finally choose H = 5.
4) Effect of p (Figure 10(a) - 10(b)): The experimental results
show that the optimal value for p is 5. In this experiment,
we fix k to 3, d to 2 and H to 5. As p increases, PR gradually
increases and gradually approaches each other as the memory
becomes larger, while CR gradually decreases and gradually
approaches each other as the memory becomes larger. When
the value of p is larger, the more counters in each slot of
RollingSketch are needed. In limited memory, for each time
window, there are less counters for frequency estimation when
the p is larger, which may lead to the low accuracy. Therefore,
in this paper, we set p = 5. In practical applications, it can be
given any value that users find desirable.
5) Effect of r (Figure 11(a) - 11(b)): The experimental
results show that the optimal value for r is 20%. In this
experiment, we fix k to 3, d to 2, H to 5 and p to 5. M
refers to the total memory of SteadySketch, which consists of
the memory of SteadyFilter and RollingSketch. As r becomes

Fig. 11. Effect of the parameter: r.

larger, PR gradually increases, while CR first increases and
then decreases. Therefore, we choose r = 20% because it can
trade off PR and CR well for different values of M .
Analysis: The results show that SteadyFilter has a more
significant impact on PR compared to that to CR, while the
RollingSketch is opposite. When the memory of SteadyFilter
is relatively small, it could not fully exert its filtering ability,
which leads to a large number of interrupted flows misjudged,
resulting in low precision rate. However, this situation doesn’t
affect CR much, since the steady flows are not identified
as interrupted. RollingSketch, on the other hand, is used for
frequency estimation, and it is overestimated. When the space
occupied by RollingSketch is too small, there are only a few
counters for frequency estimation, which leads to serious hash
collisions. In this case, most steady flows will be identified as
non-steady flows, which results in the low CR.

C. Finding Temporary Steady Flows

In this section, we compare the performance of SteadyS-
ketch in finding temporary steady flows with that of the
strawman solution and Steady-On-Off in the metrics below.
1) PR (Figure 12(a) - 12(d)): This experiment shows that the
PR of SteadySketch is significantly better than the one of the
strawman solution and Steady-On-Off. On the four datasets,
the PR of SteadySketch is around 79.5% and 82.8% higher
than the one of the strawman solution and Steady-On-Off on
average, respectively.
2) CR (Figure 13(a) - 13(d)): This experiment shows that
the CR of SteadySketch is much higher than the one of the
strawman solution and Steady-On-Off. On the four datasets,
the CR of SteadySketch is around 26.1% and 21.5% higher
than the one of the strawman solution and Steady-On-Off on
average, respectively.
3) MSE (Figure 14(a) -14(d)): This experiment shows that the
MSE of SteadySketch is obviously lower than the one of the
strawman solution and Steady-On-Off. On the four datasets,
the MSE of SteadySketch is around 4.3× and 4.1× lower
than the one of the strawman solution and Steady-On-Off on
average, respectively.
4) Throughput (Figure 15(a) - 15(d)): This experiment shows
that the throughput of SteadySketch is significantly higher than
the one of the strawman solution and Steady-On-Off. On the
four datasets, the throughput of SteadySketch is around 1.6×
and 14.7× higher than the one of the strawman solution and
Steady-On-Off on average, respectively.

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 11

Fig. 12. Temporary steady flows: precision rate (PR) vs. memory.

Fig. 13. Temporary steady flows: recall rate (CR) vs. memory.

Fig. 14. Temporary steady flows: mean squared error (MSE) vs. memory.

Fig. 15. Temporary steady flows: throughput vs. memory.

Analysis: Our experimental results show that SteadySketch
achieves clearly higher accuracy and throughput. Compared
with the strawman solution, SteadySketch reduce the size of
the counter to one quarter, thereby increasing the number of
counters by 4×. The reborn technique avoids the accuracy
loss of variance estimation caused by the frequent flows.
Thus, using the same memory space, the increased number of

counters does not lead to loss in accuracy, which significantly
reduces the MSE variance. In addition, compared with
its great superiority over the strawman solution in terms
of precision, the advantage of our solution in recall is
less significant. By comparing the results reported by the
strawman solution and SteadySketch, it is found that there are
dozens of times more steady flows reported by the strawman

12 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 16. Persistent steady flows: precision rate (PR) vs. memory.

Fig. 17. Persistent steady flows: recall rate (PR) vs. memory.

Fig. 18. Persistent steady flows: average relative error (ARE) vs. memory.

Fig. 19. Persistent steady flows: throughput vs. memory.

solution than the ground-truth that contains most of the steady
flows. The reason for this is that there are too many small
flows hash collision. As for Steady-On-Off, it has a extremely
low throughput due to the fact that it treats each flow as a
window for frequency estimation. Also, since its structure is
similar to the CM sketch, its precision, recall, and MSE are
also similar to the strawman solution.

D. Finding Persistent Steady Flows

In this section, we compare the performance of SteadyS-
ketch in finding persistent steady flows with that of the
strawman solutions and Steady-On-Off in the metrics below.

The total memory varies from 300KB to 600KB, including a
fixed 150KB of Stage 2 memory.
5) PR (Figure 16(a)-16(d)): This experiment shows that
SteadySketch substantially outperforms the strawman solution
and Steady-On-Off in PR. On the four datasets, the PR of
SteadySketch is around 57.6% and 53.0% higher than the
one of the strawman solution and Steady-On-Off on average,
respectively.
6) CR (Figure 17(a)-16(d)): This experiment shows that
SteadySketch significantly outperforms the strawman solution
and Steady-On-Off in CR. On the four datasets, the CR of
SteadySketch is around 38.2% and 34.9% higher than the

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 13

one of the strawman solution and Steady-On-Off on average,
respectively.
7) ARE (Figure 18(a)-18(d)): This experiment shows that the
ARE of SteadySketch is obviously lower than the one of the
strawman solution and Steady-On-Off. On the four datasets,
the ARE of SteadySketch is around 905.9× and 657.9× lower
than the one of the strawman solution and Steady-On-Off on
average, respectively.
8) Throughput (Figure 19(a)-19(d)): This experiment shows
that the throughput of SteadySketch is significantly higher than
the one of the strawman solution and Steady-On-Off. On the
four datasets, the throughput of SteadySketch is around 1.7×
and 18.7× higher than the one of the strawman solution and
Steady-On-Off on average, respectively.
Analysis: The results show that our solution achieves better
performance in accuracy, ARE, and throughput compared to
the strawman solution and Steady-On-Off. Owing to the supe-
rior performance of Stage 1, the flows inserted into Stage 2
are in high accuracy. Compared with SteadySketch, both the
strawman solution and Steady-On-Off report a large number
of false positive flows in Stage 1, resulting in lower throughput
and accuracy.

E. Cache Replacement Optimization

To the best of our knowledge, modern caches often adopt
Least Recently Used (LRU) eviction strategy. In this section,
however, we creatively introduce SteadySketch to predict the
coming cache line and thus improve the cache hit ratio.2 Our
success depends on a reasonable hypothesis: once we consider
a cache line is steady, it is probably fetched in the near future.
Experimental Setup: We use LRU as a comparison scheme of
the cache replacement strategy, and conduct C++ simulation
experiments. In our algorithm, we divide the cache into 3 parts:
A SteadySketch (100KB, k = 3, d = 2, H = 5 and p = 5),
a fully-associative steady part and a fully-associative general
part. Both the steady part and the general part can be seen as
a small LRU cache. When we fetch a new cache line, we first
insert its address into the SteadySketch to check if it is a
steady cache line: A steady cache line will be fetched into the
steady part and will not be evicted by unsteady ones; While
an unsteady cache line will be fetched into the general part
and will not be evicted by steady ones.
Experiments on Real-World Dataset: We conduct experi-
ments on Campus dataset, and use PM% to denote the case
when the general part takes up M% of the memory of the
cache. The experimental results are shown in Figure 20(a).
We find that under a limited cache memory, using SteadyS-
ketch can significantly improve the cache hit ratio by up to
13.02% in a wide range of cache size. Therefore, our SteadyS-
ketch provides a new way to optimize cache replacement
problem.
Experiments on Steady-Synthetic Dataset: Our Steady-
Synthetic Dataset is a mixture of 107 steady and non-steady
flows in total. The PS(%) is the portion of steady flows in
the dataset, while the other flows are random flows, most of

2The cache hit rate can be calculated as (the number of cache hits)/(the
number of memory accesses).

Fig. 20. The cache hit ratio comparison.

them only appear for a short time. In the Steady-Synthetic
Dataset experiment, we fix the cache size as 12K and increase
the ratio of steady flows in the dataset to observe the cache
hit ratio of different algorithms. The experimental results are
shown in Figure 20(b). SteadySketch can significantly improve
the cache hit ratio compared with typical LRU, especially
when the PM% is relatively small. It means that the larger the
proportion of SteadySketch is, the more significant the effect
will be, when the PS is set to 30%, the accuracy increased by
an average of 44×.

F. Redis Implementation

Redis is an open-source, in-memory data structure store
that has been widely used as a database, cache, message
broker, and streaming engine. Therefore, if SteadySketch can
be implemented on Redis, it can not only be used to find steady
flows, but also lay the foundation for a potential application:
persistence of Redis. This application means that the Redis
Database files need to save the entire dataset to disk within
a fixed time interval. In case of Redis stopping working
without a correct shutdown, we will lose a lot of data in
the last few minutes. Generally, the data with steady access
is much more important. Thus, as a future work, we can
consider preferentially storing these flows at smaller intervals
to avoid loss of important data. Next, let’s give our attention
to SteadySketch’s Redis implementation.
Challenges: Although Redis provides the API that allows us
to customize commands, it still brings us to the following
challenges. 1) The API provided by Redis has rich functions,
but it is very miscellaneous and user-unfriendly. 2) Redis is
written with ANSI C, so many data structures and functions in
C++ cannot be realized. 3) Memory allocation must be com-
pleted through Redis Module API, so it is not recommended
to dynamically allocate memory with new or malloc function.
Therefore, many functions in STL cannot be used directly,
such as set, map and string.
Implement on Redis: In this paper, we implement our
SteadySketch and strawman solution on Redis system. Each
algorithm aims at two data characteristics: temporary and per-
sistent steady flows. Thus, we have added four data structures
to Redis, and each data structure has created many commands
such as create, insert, clear, info, etc.

We conduct the experiment with the metric of throughput
on the datasets of CAIDA and Campus. The experimental
results are shown in Figure 21, the T-SteadySketch is for

14 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 21. The throughput comparison on redis.

Fig. 22. The logic of P4 implementation.

finding temporary steady flows, while the P-SteadySketch is
for persistent steady flows. The same is true for T-Strawman
and P-Strawman.
Analysis: In Figure 21, SteadySketch shows superior per-
formance over the strawman solution, especially in finding
temporary steady flows. For SteadySketch, in the two tasks,
the throughput of finding persistent steady flows is slightly
lower than that of temporary steady flows, which is caused
by the insertion of Stage 2. On the contrary, the throughput
of finding persistent steady flows with strawman solution is
much higher. This is because the task of finding temporary
steady flows could report a lot of flows in each time window,
which results in frequent calls of Redis output.

G. P4 Implementation

We have fully built a P4 prototype of the SteadySketch
on the Tofino switch [49] using P4 language [50]. In the
P4 version implementation of SteadySketch, we combine a
two-layer SteadyFilter with an one-layer RollingSketch. Under
the hardware restriction, we use the difference between the
maximum and the minimum instead of the variance.
Challenge: In Tofino architecture, packets go through the
ingress pipeline, the traffic manager and the egress pipeline in
turn. The ingress and egress pipeline each contains 12 separate
stages, each capable of handling some simple logic operations
and having independent memory. Due to the speed require-
ments of the switch, packets can only visit each stage once and
spend ultrashort time, which results in the simple operational
logic in each stage, such as addition, subtraction and shift
operation. How to measure the stability of the flow becomes
the biggest challenge in the P4 implementation. To address
the above problem, we use an additional stage to record the
maximum frequency and the minimum frequency of a flow,
then calculate the difference between them, which also plays
a role in measuring the flow stability.

TABLE II
H/W RESOURCES USED BY STEADYSKETCH

Design: As shown in Figure 22, we use a total of 8 stages in
Ingress to implement the P4 version of SteadySketch under the
Tofino model. Specifically, Stage 1 and Stage 2 are SteadyFil-
ter, Stage 5 to 7 are RollingSketch and some simple calculation
units scatter in other stages. In SteadyFilter part, we build two
parallel filters, each containing a bucket array of timestamp
and a bucket array of frequency window. As a packet passes
through, the index of the bucket array is calculated with the
built-in hash function. The packet compares its timestamp with
the corresponding timestamp bucket, then adds the frequency
bucket or sets the frequency value to one, which is same as
the SteadyFilter algorithm we mentioned earlier. After passing
the filter part, the packet entered RollingSketch part, which
consists of a bucket array of the frequency counter, a bucket
of array of the max frequency and a bucket array of the min
frequency. The index of the buckets can also be calculated with
the built-in hash function. The frequency counter records the
total number of packets passed within a timestamp interval.
If the first packet within an interval passes through, it sets the
frequency bucket corresponding to the hash index to one, and
brings the old frequency value to update the maximum bucket
and the minimum bucket in next two stages. Otherwise, the
value of the frequency bucket is simply incremented by one.
The packet reads the maximum value and the minimum value
when visits the two bucket. If the frequency window value
is bigger than the threshold and the difference between the
minimum frequency and the maximum frequency is bigger
than the threshold, just like the algorithm we mentioned, the
packet is from a steady flow and we set the flag bit to one in
the header.
Evaluation results: We list the utilization of various hardware
resources on the switch in Table II. We find the simplified logic
uses few resources of the Tofino switch. Thanks to this, the
usage rate of all hardware resources is lower than 10%. For
example, Map RAM and VLIW Instr, which consume the most
resources, account for 7.77% and 5.40% of the total quota,
respectively. The evaluation results show that the P4 version
of SteadySketch is lightweight and easy to deploy.

VI. CONCLUSION

In many applications, it is important to find steady flows in
high speed data streams in real time. In this paper, we propose
a novel algorithm called SteadySketch for real-time steady
flow detection, which is fast, memory-efficient and accurate.
Experimental results show that SteadySketch can achieve
about 79.5% and 82.8% higher PR, 1.7× and 18.7× higher

FAN et al.: SteadySketch: HIGH-PERFORMANCE ALGORITHM FOR FINDING STEADY FLOWS IN DATA STREAMS 15

throughput, and 905.9× and 657.9× lower ARE than the
two comparison schemes, respectively. Finally, we implement
SteadySketch on three concrete cases: cache replacement,
Redis, and P4 implementation. Cache replacement experiments
show that SteadySketch can significantly improve the cache hit
ratio. In Redis experiments, we add new functions and new
data structures to Redis, supporting steady flow detection and
querying in data streams. Additionally, we verify that the P4
version of SteadySketch is lightweight and easy to deploy.

REFERENCES

[1] X. Li et al., “SteadySketch: Finding steady flows in data streams,” in
Proc. IWQoS, 2023, pp. 1–9.

[2] L. Li et al., “A measurement study on multi-path TCP with multiple
cellular carriers on high speed rails,” in Proc. Conf. ACM Special Interest
Group Data Commun., Aug. 2018, pp. 161–175.

[3] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi, “A mea-
surement study on TCP behaviors in HSPA+ networks on high-speed
rails,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM), Apr. 2015,
pp. 2731–2739.

[4] J. Fan, X. Ming-wei, C. Yong, and X. Ke, “Real-time measurement of
local QoS states,” in Proc. TENCON, vol. 100, 2004, pp. 48–51.

[5] M. Shen, J. Zhang, K. Xu, L. Zhu, J. Liu, and X. Du, “DeepQoE:
Real-time measurement of video QoE from encrypted traffic with deep
learning,” in Proc. IWQoS, 2020, pp. 1–10.

[6] Y. Lei, L. Yu, V. Liu, and M. Xu, “PrintQueue: Performance diagnosis
via queue measurement in the data plane,” in Proc. ACM SIGCOMM
Conf., Aug. 2022, pp. 516–529.

[7] M. Wyss, G. Giuliari, M. Legner, and A. Perrig, “Secure and scalable
QoS for critical applications,” in Proc. IEEE/ACM 29th Int. Symp.
Quality Service (IWQOS), Jun. 2021, pp. 1–10.

[8] M. Chen, M. Xu, Q. Li, and Y. Yang, “Measurement of large-scale BGP
events: Definition, detection, and analysis,” Comput. Netw., vol. 110,
pp. 31–45, Dec. 2016.

[9] M. Chen, M. Xu, Y. Yang, and Q. Li, “A measurement study on the
distribution disparity of BGP instabilities,” in Proc. IEEE 41st Conf.
Local Comput. Netw. (LCN), Nov. 2016, pp. 19–27.

[10] Q. Huang and P. P. C. Lee, “LD-sketch: A distributed sketching design
for accurate and scalable anomaly detection in network data streams,”
in Proc. IEEE Conf. Comput. Commun., Apr. 2014, pp. 1420–1428.

[11] Z. Zhong, S. Yan, Z. Li, D. Tan, T. Yang, and B. Cui, “BurstSketch:
Finding bursts in data streams,” in Proc. Int. Conf. Manage. Data,
Jun. 2021, pp. 2375–2383.

[12] Z. Fan et al., “PeriodicSketch: Finding periodic items in data streams,”
in Proc. IEEE 38th Int. Conf. Data Eng. (ICDE), May 2022, pp. 96–109.

[13] J. Liu et al., “DUET: A generic framework for finding special quadratic
elements in data streams,” in Proc. WWW, 2022, pp. 2989–2997.

[14] C. Hua and T.-S.-P. Yum, “Optimal routing and data aggregation for
maximizing lifetime of wireless sensor networks,” IEEE/ACM Trans.
Netw., vol. 16, no. 4, pp. 892–903, Aug. 2008.

[15] D. Ayyagari and A. Ephremides, “Admission control with priorities:
Approaches for multi-rate wireless systems,” Mobile Netw. Appl., vol. 4,
pp. 209–218, Sep. 1999.

[16] N. Afrin, J. Brown, and J. Y. Khan, “Design of a buffer and channel
adaptive LTE semi-persistent scheduler for M2M communications,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2015, pp. 5821–5826.

[17] H. Gomaa, G. G. Messier, C. Williamson, and R. Davies, “Estimating
instantaneous cache hit ratio using Markov chain analysis,” IEEE/ACM
Trans. Netw., vol. 21, no. 5, pp. 1472–1483, Oct. 2013.

[18] Z. Fan et al., “Finding simplex items in data streams,” in Proc. IEEE
39th Int. Conf. Data Eng. (ICDE), Apr. 2023, pp. 1953–1966.

[19] B. Lahiri, S. Tirthapura, and J. Chandrashekar, “Space-efficient tracking
of persistent items in a massive data stream,” ASA Data Sci. J., vol. 7,
no. 1, pp. 70–92, 2014.

[20] H. Dai, M. Shahzad, A. X. Liu, M. Li, Y. Zhong, and G. Chen,
“Identifying and estimating persistent items in data streams,” IEEE/ACM
Trans. Netw., vol. 26, no. 6, pp. 2429–2442, Dec. 2018.

[21] H. Dai, M. Li, A. X. Liu, J. Zheng, and G. Chen, “Finding persistent
items in distributed datasets,” IEEE/ACM Trans. Netw., vol. 28, no. 1,
pp. 1–14, Feb. 2020.

[22] Y. Zhang et al., “On-off sketch: A fast and accurate sketch on persis-
tence,” Proc. VLDB Endowment, vol. 14, no. 2, pp. 128–140, Oct. 2020.

[23] H. Huang et al., “You can drop but you can’t hide: K-persistent
spread estimation in high-speed networks,” in Proc. INFOCOM, 2018,
pp. 1889–1897.

[24] H. Huang et al., “An efficient K-persistent spread estimator for traffic
measurement in high-speed networks,” IEEE/ACM Trans. Netw., vol. 28,
no. 4, pp. 1463–1476, Aug. 2020.

[25] Y.-E. Sun, H. Huang, S. Chen, Y. Zhou, K. Han, and W. Yang,
“Privacy-preserving estimation of k-persistent traffic in vehicular cyber-
physical systems,” IEEE Internet Things J., vol. 6, no. 5, pp. 8296–8309,
Oct. 2019.

[26] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, Apr. 2005.

[27] S. Shahriar, Algebra in Action: A Course in Groups, Rings, and Fields,
vol. 27. Providence, RI, USA: American Mathematical Society, 2017.

[28] (2018). The CAIDA Anonymized Internet Traces. [Online]. Available:
http://www.caida.org/data/overview/

[29] (2024). The Source Code of SteadySketch. [Online]. Available:
https://github.com/pkufzc/SteadySketch_ToN

[30] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[31] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” IEEE/ACM Trans. Netw., vol. 22, no. 4,
pp. 1092–1105, Aug. 2014.

[32] J. Lu et al., “Low computational cost Bloom filters,” IEEE/ACM Trans.
Netw., vol. 26, no. 5, pp. 2254–2267, Oct. 2018.

[33] Y. Wu et al., “Elastic Bloom filter: Deletable and expandable filter using
elastic fingerprints,” IEEE Trans. Comput., vol. 71, no. 4, pp. 984–991,
Apr. 2022.

[34] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, Aug. 2003.

[35] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” Theor. Comput. Sci., vol. 312, no. 1, pp. 3–15, 2004.

[36] T. Yang et al., “Elastic sketch: Adaptive and fast network-wide mea-
surements,” in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 561–575.

[37] Y. Zhang et al., “CocoSketch: High-performance sketch-based measure-
ment over arbitrary partial key query,” in Proc. ACM SIGCOMM Conf.,
Aug. 2021, pp. 207–222.

[38] Q. Huang et al., “SketchVisor: Robust network measurement for soft-
ware packet processing,” in Proc. SIGCOMM, 2017, pp. 113–126.

[39] L. Tang, Q. Huang, and P. P. C. Lee, “A fast and compact invertible
sketch for network-wide heavy flow detection,” IEEE/ACM Trans. Netw.,
vol. 28, no. 5, pp. 2350–2363, Oct. 2020.

[40] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Proc. ICDT, 2005,
pp. 398–412.

[41] D. Ting, “Data sketches for disaggregated subset sum and frequent
item estimation,” in Proc. Int. Conf. Manage. Data, May 2018,
pp. 1129–1140.

[42] T. Yang et al., “Adaptive measurements using one elastic
sketch,” IEEE/ACM Trans. Netw., vol. 27, no. 6, pp. 2236–2251,
Dec. 2019.

[43] T. Yang et al., “HeavyKeeper: An accurate algorithm for finding top-k
elephant flows,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1845–1858,
Oct. 2019.

[44] Y. Li et al., “LadderFilter: Filtering infrequent items with small memory
and time overhead,” in Proc. SIGMOD, 2023, pp. 1–21.

[45] (2010). MAWI Working Group Traffic Archive. [Online]. Available:
http://mawi.wide.ad.jp/mawi/

[46] D. M. Powers, “Applications and explanations of Zipf’s law,” in Proc.
NeMLaP3/CoNLL, 1998, pp. 151–160.

[47] A. Rousskov and D. Wessels, “High-performance benchmarking with
web polygraph,” Softw., Pract. Exper., vol. 34, no. 2, pp. 187–211,
Feb. 2004.

[48] (2016). The Source Code of Murmur Hash. [Online]. Available:
https://github.com/aappleby/smhasher

[49] (2022). Barefoot Tofino: World’s Fastest P4-Programmable Eth-
ernet Switch Asics. [Online]. Available: https://barefootnetworks.
com/products/brief-tofino/

[50] (2020). P4-16 Language Specification. [Online]. Available:
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html#sec-checksums

16 IEEE/ACM TRANSACTIONS ON NETWORKING

Zhuochen Fan received the Ph.D. degree in com-
puter science from Peking University in 2023,
advised by Tong Yang. He is currently a Boya
Post-Doctoral Fellow with the School of Com-
puter Science, Peking University. He had articles
published by IEEE/ACM TRANSACTIONS ON NET-
WORKING, VLDB Journal, IEEE TRANSACTIONS
ON KNOWLEDGE AND DATA ENGINEERING, ICDE,
RTSS, ICPP, and ICNP, etc. His research interests
include approximation algorithms in computer net-
works and databases.

Xiangyuan Wang is currently pursuing the bach-
elor’s degree with Peking University, majoring in
information and computing sciences, advised by
Tong Yang. His research interests include data struc-
tures and algorithms in network measurements. He is
also interested in machine learning.

Xiaodong Li received the B.E. degree in IoT
engineering from the University of Science and
Technology Beijing in 2019 and the M.S. degree
from Peking University in 2023. His research inter-
ests mainly focus on data stream processing and
programmable switches.

Jiarui Guo (Graduate Student Member, IEEE)
received the B.S. degree in computer science from
Peking University in 2023, where he is currently
pursuing the Ph.D. degree in computer science,
advised by Tong Yang. His research interests include
approximation algorithms in data streams and com-
puter network systems.

Wenrui Liu received the B.S. degree in computer
science from Peking University in 2023, where he
is currently pursuing the M.S. degree in computer
science, advised by Tong Yang. His research inter-
ests include network measurements, programmable
switches, and network systems.

Haoyu Li received the B.S. degree in computer
science from Peking University in 2023, advised
by Tong Yang. He is currently pursuing the Ph.D.
degree in computer science with The University
of Texas at Austin. His research interests include
computer networking, systems, and databases.

Sheng Long received the B.S. degree from the
Department of Electrical Engineering and Computer
Science, Peking University, in 2022, advised by
Tong Yang. His research interests include network
measurements, sketches, and KV stores.

Zheng Zhong received the B.S. degree from the
Department of Electrical Engineering and Computer
Science, Peking University, in 2023, advised by
Tong Yang. He is currently pursuing the M.S. degree
with Guanghua School of Management, Peking Uni-
versity. He has published articles in SIGMOD and
SIGKDD. His research interests include streaming
processing, bloom filters, and data structures.

Tong Yang (Member, IEEE) received the Ph.D.
degree in computer science from Tsinghua Univer-
sity in 2013. He visited the Institute of Computing
Technology, Chinese Academy of Sciences (CAS).
He is currently an Associate Professor with the
School of Computer Science, Peking University.
He has published dozens of articles in IEEE/ACM
TRANSACTIONS ON NETWORKING, IEEE JOUR-
NAL ON SELECTED AREAS IN COMMUNICATIONS,
IEEE TRANSACTIONS ON PARALLEL AND DIS-
TRIBUTED SYSTEMS, IEEE TRANSACTIONS ON

COMPUTERS, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGI-
NEERING, SIGCOMM, SIGKDD, SIGMOD, NSDI, USENIX ATC, ICDE,
VLDB, and INFOCOM. His research interests include network measurements,
sketches, IP lookups, bloom filters, and KV stores. He served as a TPC
Member for several premier conferences, such as INFOCOM, IMC, ICNP,
and ICDE. He is also an Associate Editor of Knowledge and Information
Systems.

Xuebin Chen received the Ph.D. degree from the
Hebei University of Technology. He is currently a
professor of North China University of Science and
Technology, the Director of Tangshan Key Labo-
ratory of Data Science, and the Director of Hebei
Key Laboratory of Data Science and Application.
He is a Council Member of China Computer Fed-
eration (CCF), Secretary General CCF Computer
Application Technical Committee, Member of CCF
High Performance Computing Technical Committee,
and Member of CCF Big Data Expert Committee.

His research interests include big data, network security, and data security.
He presided and participated more than 30 horizontal projects of national,
provincial and municipal levels. He published more than 50 academic papers,
registered more than 40 software copyrights, and gained 3 Science and
Technology Progress Awards.

Bin Cui (Fellow, IEEE) received the Ph.D. degree
from the National University of Singapore in 2004.
He is currently a Professor and the Vice Dean of the
School of CS, Peking University. His research inter-
ests include database system architectures, query
and index techniques, big data management, and
mining. He was awarded the Microsoft Young Pro-
fessorship Award (MSRA 2008), the CCF Young
Scientist Award (2009), and the Second Prize of
Natural Science Award of MOE China (2014), and
was appointed as a Cheung Kong Distinguished

Professor by MOE in 2016. He is serving as the Vice Chair for Technical
Committee on Database China Computer Federation (CCF) and a Trustee
Board Member for VLDB Endowment. He is also on the Editorial Board
of Distributed and Parallel Databases, Journal of Computer Science and
Technology, and Science China Information Sciences, and was an Associate
Editor of IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
and The VLDB Journal.

