
SketchPolymer: Estimate Per-item Tail Quantile 
Using One Sketch

Jiarui Guo, Yisen Hong, Yuhan Wu, 

Yunfei Liu, Tong Yang, Bin Cui

1



01 Background
Part One

2



Motivation

Quantile

What’s the 0.9-quantile 
value of all items?

What’s the 0.9-quantile 
value of items with key 34?

Per-item quantile



• Quantile estimation algorithms
• GK, KLL, t-digest, DDSketch...…

• Per-item quantile estimation algorithms
• ???

Motivation



• Application: Per-flow tail latency in network scenarios
• network management
• attack detection

Motivation



Solution: SketchPolymer

• Approximate stream algorithms can solve this problem
• Small: placed on cache
• Fast: updated within O(1) time complexity
• Accurate: 32.67 times better than state-of-the-arts



02 Algorithm
Part Two

7



SketchPolymer Algorithm

• Polymer: substance made from combinations of small
simple molecules
• SketchPolymer: Polymer of sketches

• Data structure: 4 stages
• Filter Stage, Polymer Stage, Splitting Stage, Verification

Filter
• Key techniques:
• Early Filtration
• Value Splitting and Sharing (VSS)



Early Filtration

• Quantile estimation for infrequent items:
• Hard & inaccurate
• Solution: filter infrequent items

• SketchPolymer uses Filter Stage to filter infrequent items
• Filter Stage:
• Query Filter Stage before insertion
• Items with frequency exceeding the threshold enter

the following stage



VSS

• Split all positive numbers by logarithm
• Quantile estimation ⇒ frequency estimation

[1, a)

[a, a2)

[a2, a3)

…

[an, an+1)

…

e

e

e

e

e

e

e

e0 e0

e1 e1

e2

…

en en

…

VSS



SketchPolymer Operations

• Polymer Stage and Splitting Stage: based on CMSketch
• Polymer Stage records frequency & max log value
• Splitting Stage records frequency after VSS



Two Optimizations

• Memory Optimization: Counter Truncation
• Using 8-bit counters in Splitting Stage

• Accuracy Optimization: Overestimation Avoidance
• Using Verification Filter



SketchPolymer Algorithm

10 50 23 70 30 7 98 34
Stage 1: Filter Stage

e1t = 4563

e2t = 89
T = log1.189 = 47

Stage 2: Polymer Stage

Frequency
Value

950
45

100
70

37
19

88
103

71
12

280
92

Stage 4: Verification Filter

1 0 1 0 1 0 1 0 67 1 2 235 9 4 32

Stage 3: Splitting Stage

11

951

47

1 1



SketchPolymer Algorithm

Stage 4: Verification Filter

1 0 1 0 1 0 1

10 50 23 70 30 7 98 34
Stage 1: Filter Stage

10 50 23 70 30 7 98 34

Frequency
Value

950
45

100
70

37
19

88
103

71
12

280
92

0 67 1 2 235 9 4 32

e3w = 0.95

m = (1 – 0.95) * 100 = 5

T 70 69 68 67

f 1 0 2 4

Stage 2: Polymer Stage

Stage 3: Splitting Stage



03 Mathematics
Part Three

15



Theoretical Analysis

• Error bound
• If the Polymer Stage and the Splitting Stage both use 𝑑

hash functions, then the error of SketchPolymer is at
most 𝜀 w.p. 1 − 𝑂 𝜀!" .

• Time complexity
• 𝑂 1 insertion time complexity



04 Experiments
Part Four

17



Experimental Results



Experimental Results



SketchPolymer on Hardware Platforms

P4 Implementation
Search controlInsert control

HASH1

Frequency_min

RAM1

HASH2

RAM2

min

insert insert

Stage1

HASH1

Frequency_min

RAM1

HASH2

RAM2

min

insert insert

Stage3

HASH1

Bit_and

RAM1

HASH2

RAM2

and

insert insert

Stage4

min

HASH1 HASH2

RAM1 RAM3

insert

RAM2 RAM4

insert

Frequency_min Value_min

min

Stage2

Input 𝑒𝑒
64b

𝑡𝑡
64b

𝒯𝒯
64b Input 𝑒𝑒

64b
𝑤𝑤

64b

search

search search

search search

Output

log2 𝑡𝑡 log2 𝑡𝑡 log2 𝑡𝑡

𝑡𝑡
64b

2𝑇𝑇

3 cycle

≥21 cycle for insert 𝑒𝑒

≥18 cycle for search 𝑒𝑒

hash
1 cycle 

insert
1 cycle 

search
1 cycle

FPGA Implementation



05 Summary
Part Five

21



Summary

• We design a novel sketch to estimate per-item tail quantile.
• We provide mathematical analysis for SketchPolymer.
• Experimental results show that SketchPolymer outperforms

existing algorithms in terms of error and speed.
• We implement SketchPolymer on P4 switches and FPGA.



Thank You!

23

Source code: https://github.com/SketchPolymer/SketchPolymer-code
Jiarui Guo

Peking University, China
Email: ntguojiarui@pku.edu.cn

Homepage: https://ntguojiarui.github.io/


